IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i3p898-914.html
   My bibliography  Save this article

Multicomponent Maintenance Optimization: A Stochastic Programming Approach

Author

Listed:
  • Zhicheng Zhu

    (Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, Texas 79409)

  • Yisha Xiang

    (Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, Texas 79409)

  • Bo Zeng

    (Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261)

Abstract

Maintenance optimization has been extensively studied in the past decades. However, most of the existing maintenance models focus on single-component systems and are not applicable to complex systems consisting of multiple components, due to various interactions among the components. The multicomponent maintenance optimization problem, which joins the stochastic processes regarding the failures of components with the combinatorial problems regarding the grouping of maintenance activities, is challenging in both modeling and solution techniques, and has remained an open issue in the literature. In this paper, we study the multicomponent maintenance problem over a finite planning horizon and formulate the problem as a multistage stochastic integer program with decision-dependent uncertainty. There is a lack of general efficient methods to solve this type of problem. To address this challenge, we use an alternative approach to model the underlying failure process and develop a novel two-stage model without decision-dependent uncertainty. Structural properties of the two-stage problem are investigated, and a progressive-hedging-based heuristic is developed based on the structural properties. Our heuristic algorithm demonstrates a significantly improved capacity to handle large-size two-stage problems comparing to three conventional methods for stochastic integer programming, and solving the two-stage model by our heuristic in a rolling horizon provides a good approximation of the multistage problem. The heuristic is further benchmarked with a dynamic programming approach and a structural policy, which are two commonly adopted approaches in the literature. Numerical results show that our heuristic can lead to significant cost savings compared with the benchmark approaches.

Suggested Citation

  • Zhicheng Zhu & Yisha Xiang & Bo Zeng, 2021. "Multicomponent Maintenance Optimization: A Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 898-914, July.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:3:p:898-914
    DOI: 10.1287/ijoc.2020.0997
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.0997
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.0997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    2. A. Federgruen & H. Groenevelt & H. C. Tijms, 1984. "Coordinated Replenishments in a Multi-Item Inventory System with Compound Poisson Demands," Management Science, INFORMS, vol. 30(3), pages 344-357, March.
    3. Rommert Dekker & Ralph Wildeman & Frank Duyn Schouten, 1997. "A review of multi-component maintenance models with economic dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(3), pages 411-435, October.
    4. Jean-Paul Watson & David Woodruff, 2011. "Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems," Computational Management Science, Springer, vol. 8(4), pages 355-370, November.
    5. Dekker, R. & Wildeman, R. E. & van Egmond, R., 1996. "Joint replacement in an operational planning phase," European Journal of Operational Research, Elsevier, vol. 91(1), pages 74-88, May.
    6. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    7. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    8. Scarf, Philip A., 1997. "On the application of mathematical models in maintenance," European Journal of Operational Research, Elsevier, vol. 99(3), pages 493-506, June.
    9. Ding, Fangfang & Tian, Zhigang, 2012. "Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds," Renewable Energy, Elsevier, vol. 45(C), pages 175-182.
    10. Merve Bodur & Sanjeeb Dash & Oktay Günlük & James Luedtke, 2017. "Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 77-91, February.
    11. Van Horenbeek, Adriaan & Pintelon, Liliane, 2013. "A dynamic predictive maintenance policy for complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 39-50.
    12. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boujarif, Abdelhamid & Coit, David W. & Jouini, Oualid & Zeng, Zhiguo & Heidsieck, Robert, 2025. "Repairing smarter: Opportunistic maintenance for a closed-loop supply chain with spare parts dependency," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    2. Qiuzhuang Sun & Piao Chen & Xin Wang & Zhi‐Sheng Ye, 2023. "Robust condition‐based production and maintenance planning for degradation management," Production and Operations Management, Production and Operations Management Society, vol. 32(12), pages 3951-3967, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Wenjin & Fouladirad, Mitra & Bérenguer, Christophe, 2016. "A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 50-63.
    2. Do, Phuc & Vu, Hai Canh & Barros, Anne & Bérenguer, Christophe, 2015. "Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 56-67.
    3. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    4. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    5. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    6. Markus Bohlin & Mathias Wärja, 2015. "Maintenance optimization with duration-dependent costs," Annals of Operations Research, Springer, vol. 224(1), pages 1-23, January.
    7. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    8. Ayse Sena Eruguz & Tarkan Tan & Geert‐Jan van Houtum, 2017. "Optimizing usage and maintenance decisions for k‐out‐of‐n systems of moving assets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 418-434, August.
    9. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    10. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    11. Leppinen, Jussi & Punkka, Antti & Ekholm, Tommi & Salo, Ahti, 2025. "An optimization model for determining cost-efficient maintenance policies for multi-component systems with economic and structural dependencies," Omega, Elsevier, vol. 130(C).
    12. Tazi, Nacef & Châtelet, Eric & Bouzidi, Youcef, 2018. "How combined performance and propagation of failure dependencies affect the reliability of a MSS," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 531-541.
    13. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    14. Mahmood Shafiee & Maxim Finkelstein, 2015. "A proactive group maintenance policy for continuously monitored deteriorating systems: Application to offshore wind turbines," Journal of Risk and Reliability, , vol. 229(5), pages 373-384, October.
    15. Anahita Khojandi & Lisa M. Maillart & Oleg A. Prokopyev & Mark S. Roberts & Samir F. Saba, 2018. "Dynamic Abandon/Extract Decisions for Failed Cardiac Leads," Management Science, INFORMS, vol. 64(2), pages 633-651, February.
    16. Abu MD Ariful Islam & Jørn Vatn, 2023. "Condition-based multi-component maintenance decision support under degradation uncertainties," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 961-979, December.
    17. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    18. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    19. Van Horenbeek, Adriaan & Pintelon, Liliane, 2013. "A dynamic predictive maintenance policy for complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 39-50.
    20. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:3:p:898-914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.