IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v255y2025ics0951832024007026.html
   My bibliography  Save this article

On repairable systems with time redundancy and operational constraints

Author

Listed:
  • Goyal, Dheeraj
  • Finkelstein, Maxim
  • Hazra, Nil Kamal

Abstract

For some repairable systems executing missions/tasks, a functional failure, i.e., a failure of a mission or task can occur not immediately after equipment failure but with some delay. This happens when a failure/defect is not repaired within some specified period of time. Alternatively, a functional failure can also occur when a new failure/defect happens relatively soon after the completion of the previous repair. In this paper, we present a new stochastic model that defines and describes the lifetimes of this kind of repairable systems with operational constraints. A new approach based on Laplace transforms is developed to study the reliability function and the mean time to failure for these systems. Furthermore, we consider the stochastic model when only a finite number of repairs are allowed and obtain relevant reliability indices for this case as well. Detailed numerical examples illustrate our findings.

Suggested Citation

  • Goyal, Dheeraj & Finkelstein, Maxim & Hazra, Nil Kamal, 2025. "On repairable systems with time redundancy and operational constraints," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007026
    DOI: 10.1016/j.ress.2024.110631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eryilmaz, Serkan & Unlu, Kamil Demirberk, 2023. "A new generalized δ-shock model and its application to 1-out-of-(m+1):G cold standby system," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Juybari, Mohammad N. & Hamadani, Ali Zeinal & Ardakan, Mostafa Abouei, 2023. "Availability analysis and cost optimization of a repairable system with a mix of active and warm-standby components in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Zhang, Changzhen & Yang, Jun & Li, Mingjia & Wang, Ning, 2024. "Reliability analysis of a two-dimensional linear consecutive-(r,s)-out-of-(m,n): F repairable system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Cha, Ji Hwan & Finkelstein, Maxim, 2019. "Stochastic modeling for systems with delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 118-124.
    5. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, July.
    6. Li, Yan & Zhang, Wei & Liu, Baoliang & Wang, Xiaofeng, 2024. "Availability and maintenance strategy under time-varying environments for redundant repairable systems with PH distributions," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    7. Zhang, Wenyu & Gan, Jie & He, Shuguang & Li, Ting & He, Zhen, 2024. "An integrated framework of preventive maintenance and task scheduling for repairable multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    8. Chadjiconstantinidis, Stathis & Eryilmaz, Serkan, 2023. "Reliability of a mixed δ-shock model with a random change point in shock magnitude distribution and an optimal replacement policy," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On the Time-Dependent Delta-Shock Model Governed by the Generalized PóLya Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1627-1650, September.
    10. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal loading of repairable system with perfect product storage," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    11. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Gao, Hongda & Cui, Lirong & Yi, He, 2019. "Availability analysis of k-out-of-n: F repairable balanced systems with m sectors," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Sun, Tianqi & Vatn, Jørn, 2024. "A phase-type maintenance model considering condition-based inspections and maintenance delays," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Asadi, Majid, 2023. "On a parametric model for the mean number of system repairs with applications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Qingan Qiu & Lirong Cui, 2019. "Availability analysis for general repairable systems with repair time threshold," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(3), pages 628-647, February.
    16. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2023. "A general class of shock models with dependent inter-arrival times," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 1079-1105, September.
    17. Cheng, Wanqing & Zhao, Xiujie, 2023. "Maintenance optimization for dependent two-component degrading systems subject to imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    18. Park, Minjae & Mun Jung, Ki & Park, Dong Ho, 2013. "Optimal post-warranty maintenance policy with repair time threshold for minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 147-153.
    19. Dreyfuss, Michael & Giat, Yahel, 2017. "Optimal spares allocation to an exchangeable-item repair system with tolerable wait," European Journal of Operational Research, Elsevier, vol. 261(2), pages 584-594.
    20. Kurt, Murat & Kharoufeh, Jeffrey P., 2010. "Optimally maintaining a Markovian deteriorating system with limited imperfect repairs," European Journal of Operational Research, Elsevier, vol. 205(2), pages 368-380, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimizing corrective maintenance for multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Hu, Zebin & Hu, Linmin & Wu, Shaomin & Yu, Xiaoyun, 2024. "Reliability assessment of discrete-time k/n(G) retrial system based on different failure types and the δ-shock model," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Eryilmaz, Serkan & Unlu, Kamil Demirberk, 2023. "A new generalized δ-shock model and its application to 1-out-of-(m+1):G cold standby system," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Chadjiconstantinidis, Stathis & Eryilmaz, Serkan, 2024. "On δ-shock model with a change point in intershock time distribution," Statistics & Probability Letters, Elsevier, vol. 208(C).
    5. Lijun Shang & Baoliang Liu & Kaiye Gao & Li Yang, 2023. "Random Warranty and Replacement Models Customizing from the Perspective of Heterogeneity," Mathematics, MDPI, vol. 11(15), pages 1-22, July.
    6. Zhang, Dingmao & Li, Gengfeng & Bie, Zhaohong & Fan, Kangjian, 2024. "An analytical method for reliability evaluation of power distribution system with time-varying failure rates," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    7. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2025. "Standby and inspection policy optimization in systems exposed to common and operational shock processes," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    8. Ma, Xiaobing & Han, Ruoran & Chen, Yi & Qiu, Qingan & Yan, Rui & Yang, Li, 2024. "Intelligent spare ordering and replacement optimisation leveraging adaptive prediction information," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    9. Zhang, Wenyu & He, Shuguang & Zhang, Xiaohong & Zhao, Xing, 2024. "Joint optimization of job scheduling, condition-based maintenance planning, and spare parts ordering for degrading production systems," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    10. Cha, Ji Hwan & Finkelstein, Maxim, 2019. "Stochastic modeling for systems with delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 118-124.
    11. Ning, Ru & Wang, Xiaoyue & Zhao, Xian & Li, Ziyue, 2024. "Joint optimization of preventive maintenance and triggering mechanism for k-out-of-n: F systems with protective devices based on periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Altındağ, Ömer & Aydoğdu, Halil, 2021. "Estimation of renewal function under progressively censored data and its applications," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Kang, Fengming & Cui, Lirong & Ye, Zhisheng & Zhou, Yu, 2024. "Reliability analysis for systems with self-healing mechanism in degradation-shock dependence processes with changing degradation rate," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Gao, Hongda & Tu, Tengfei & Qiu, Qingan, 2024. "Reliability analysis for a generalized sparse connection multi-state consecutive-k-out-of-n linear system," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    15. Maxim Finkelstein & Ji Hwan Cha, 2024. "Discussing some approaches to delta-shock modeling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 245-262, July.
    16. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Hui Chen & Jie Chen & Yangyang Lai & Xiaoqi Yu & Lijun Shang & Rui Peng & Baoliang Liu, 2024. "Discrete Random Renewable Replacements after the Expiration of Collaborative Preventive Maintenance Warranty," Mathematics, MDPI, vol. 12(18), pages 1-21, September.
    18. Majid Asadi & Maxim Finkelstein, 2024. "On variability of the mean remaining lifetime at random age," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 717-730, September.
    19. Maxim S. Finkelstein, 2008. "On systems with shared resources and optimal switching strategies," MPIDR Working Papers WP-2008-025, Max Planck Institute for Demographic Research, Rostock, Germany.
    20. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2018. "Constructing a Markov process for modelling a reliability system under multiple failures and replacements," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 34-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.