IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025001826.html
   My bibliography  Save this article

Dynamic ensemble fault diagnosis framework with adaptive hierarchical sampling strategy for industrial imbalanced and overlapping data

Author

Listed:
  • Dong, Haoyan
  • Peng, Chuang
  • Chen, Lei
  • Hao, Kuangrong

Abstract

The coexistence of class imbalance and class overlap significantly challenges fault diagnosis in modern industrial processes. Class imbalance, characterized by the scarcity of fault data, and class overlap, arising from similarities between normal and fault data as well as correlations among fault types, are intertwined issues that jointly degrade fault diagnosis performance. To address these coupled issues, this paper proposes a dynamic ensemble fault diagnosis framework with adaptive hierarchical sampling strategy (DEAHS). The framework employs a boosting ensemble structure, effectively mitigating class imbalance through dynamic majority class undersampling and reducing class overlap by focusing on minority classes in high-overlap regions. In the outer layer, a Markov decision process guides the adaptive undersampling of majority class, achieving relatively balanced subsets. In the inner layer, a membership entropy-based method identifies overlap regions, and a weighted oversampling strategy improves minority classes’ representation in these regions. The proposed framework is validated on the Tennessee Eastman process and a real-world polyester esterification process, where its performance is evaluated using four metrics commonly employed for imbalanced datasets. The results demonstrate that the proposed method achieves superior performance across a majority of metrics, highlighting its effectiveness in handling imbalanced and overlapping industrial fault data.

Suggested Citation

  • Dong, Haoyan & Peng, Chuang & Chen, Lei & Hao, Kuangrong, 2025. "Dynamic ensemble fault diagnosis framework with adaptive hierarchical sampling strategy for industrial imbalanced and overlapping data," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001826
    DOI: 10.1016/j.ress.2025.110979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qikang & Tang, Baoping & Deng, Lei & Yang, Qichao & Zhu, Peng, 2024. "Adaptive centroid prototype-based domain adaptation for fault diagnosis of rotating machinery without source data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Tian, Jilun & Jiang, Yuchen & Zhang, Jiusi & Luo, Hao & Yin, Shen, 2024. "A novel data augmentation approach to fault diagnosis with class-imbalance problem," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zhang, Jiaxin & Rangaiah, Gade Pandu & Dong, Lichun & Samavedham, Lakshminarayanan, 2025. "An improved industrial fault diagnosis model by integrating enhanced variational mode decomposition with sparse process monitoring method," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    4. Zhang, Zhongwei & Jiao, Zonghao & Li, Youjia & Shao, Mingyu & Dai, Xiangjun, 2024. "Intelligent fault diagnosis of bearings driven by double-level data fusion based on multichannel sample fusion and feature fusion under time-varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    5. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Liu, Ruonan & Zhang, Quanhu & Lin, Di & Zhang, Weidong & Ding, Steven X., 2024. "Causal intervention graph neural network for fault diagnosis of complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiao & Huang, Weiguo & Wang, Jun & Zhu, Zhongkui & Shen, Changqing & Chen, Kai & Zhong, Xingli & He, Li, 2025. "Adaptive variational sampling-embedded domain generalization network for fault diagnosis with intra-inter-domain class imbalance," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    2. Wang, Haoyu & Li, Chuanjiang & Ding, Peng & Li, Shaobo & Li, Tandong & Liu, Chenyu & Zhang, Xiangjie & Hong, Zejian, 2024. "A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Xia, Huaitao & Meng, Tao & Zuo, Zonglin & Ma, Wenjie, 2025. "Fault semantic knowledge transfer learning: Cross-domain compound fault diagnosis method under limited single fault samples," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    5. Zheng, Yu & Chen, Liang & Bao, Xiangyu & Zhao, Fei & Zhong, Jingshu & Wang, Chenhan, 2025. "Prediction model optimization of gas turbine remaining useful life based on transfer learning and simultaneous distillation pruning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    6. Wang, Xiaomin & Zhuang, Xiao & Zhou, Di & Ge, Jian & Xiang, Jiawei, 2025. "A novel sparrow search algorithm based co-correlation graph construction strategy for wind turbine group anomaly identification via graph attention networks," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    7. Kim, Yong Chae & Lee, Jinwook & Kim, Taehun & Baek, Jonghwa & Ko, Jin Uk & Jung, Joon Ha & Youn, Byeng D., 2024. "Gradient Alignment based Partial Domain Adaptation (GAPDA) using a domain knowledge filter for fault diagnosis of bearing," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    8. Huang, Yaodi & Song, Yunpeng & Cai, Zhongmin, 2025. "A supervised contrastive learning method with novel data augmentation for transient stability assessment considering sample imbalance," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    9. Lin, Cuiying & Kong, Yun & Huang, Guoyu & Han, Qinkai & Dong, Mingming & Liu, Hui & Chu, Fulei, 2025. "Generalization classification regularization generative adversarial network for machinery fault diagnostics under data imbalance," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    10. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Lei, Zihao & Wen, Guangrui & Chen, Xuefeng, 2025. "Unsupervised anomaly detection of machines operating under time-varying conditions: DCD-VAE enabled feature disentanglement of operating conditions and states," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    11. Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Yan, Shen & Zhong, Xiang & Shao, Haidong & Ming, Yuhang & Liu, Chao & Liu, Bin, 2023. "Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    13. Liu, Jianing & Cao, Hongrui & Luo, Yang, 2023. "An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Chen, Xirui & Liu, Hui, 2025. "Domain correction for hydraulic internal pump leakage detection considering multiclass aberrant flow data," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    15. Chen, Yuejian & Liu, Xuemei & Rao, Meng & Qin, Yong & Wang, Zhipeng & Ji, Yuanjin, 2025. "Explicit speed-integrated LSTM network for non-stationary gearbox vibration representation and fault detection under varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    16. Sun, Yongjian & Yu, Gang & Wang, Wei, 2025. "Image texture feature fusion enhancement for bearing fault diagnosis based on maximum gradient," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    17. Guo, Yu & Li, Xiangyu & Zhang, Jundong & Cheng, Ziyi, 2025. "SDCGAN: A CycleGAN-based single-domain generalization method for mechanical fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    18. Cao, Yudong & Jia, Minping & Zhao, Xiaoli & Yan, Xiaoan & Feng, Ke, 2024. "Complex augmented representation network for transferable health prognosis of rolling bearing considering dynamic covariate shift," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Zhou, Tao & Yao, Dechen & Yang, Jianwei & Meng, Chang & Li, Ankang & Li, Xi, 2024. "DRSwin-ST: An intelligent fault diagnosis framework based on dynamic threshold noise reduction and sparse transformer with Shifted Windows," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Liu, Ruonan & Zhang, Quanhu & Lin, Di & Zhang, Weidong & Ding, Steven X., 2024. "Causal intervention graph neural network for fault diagnosis of complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025001826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.