IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002236.html
   My bibliography  Save this article

Kernel Reinforcement Learning for sampling-efficient risk management of large-scale engineering systems

Author

Listed:
  • Zhang, Dingyang
  • Zhang, Yiming
  • Li, Pei
  • Zhang, Shuyou

Abstract

Mainstream methods for maintenance scheduling of multi-state systems (e.g. aircraft engines) often encounter challenges such as uncertainty accumulation, the need for extensive training data, and instability in the training process, particularly in life-cycle cost management. This paper introduces an innovative Kernel Reinforcement Learning (KRL) approach designed to enhance the reliability and safety of multi-state systems while significantly increasing decision-making efficiency. The policy and value functions are formulated non-parametrically to capture high-value episodes and datasets. KRL integrates probabilistic setups to imbue reinforcement learning with uncertainty, enhancing exploration of state–action spaces. Prior knowledge can be seamlessly integrated with the probabilistic framework to accelerate convergence. To address the memory issues associated with kernel methods when handling large datasets, the kernel matrix is dynamically updated with screened high-value datasets. Numerical evaluations on a k-out-of-n system, a coal mining transportation system, and an aircraft engine simulation demonstrate that the proposed KRL approach achieves faster convergence and reduced life-cycle costs compared to alternative methods. Specifically, KRL reduces the number of training episodes by 2–3 orders of magnitude, with a maximum cost reduction of 92%.

Suggested Citation

  • Zhang, Dingyang & Zhang, Yiming & Li, Pei & Zhang, Shuyou, 2025. "Kernel Reinforcement Learning for sampling-efficient risk management of large-scale engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002236
    DOI: 10.1016/j.ress.2025.111022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.