IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006683.html
   My bibliography  Save this article

Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery

Author

Listed:
  • Yang, Sen
  • Zhang, Yi
  • Lu, Xinzheng
  • Guo, Wei
  • Miao, Huiquan

Abstract

After a city-scale natural hazard, policymakers should plan sound decisions on the repair sequence to ensure the resilient recovery of the community, which consists of interdependent infrastructures. Stochastic scheduling for repairing interdependent infrastructure systems is a difficult control problem with huge decision spaces. This study proposes a novel decision support model to determine the optimal restoration policies for the purpose of maximizing disaster resilience. A simulation environment is first developed, consisting of hazard intensity assessment, components damage evaluation, system recovery simulation, and resilience quantification. The graph theory is utilized to represent the interdependencies among different systems, and the heterogeneous graph neural network is integrated into this framework to extract the topology and interdependency information of the whole community. The optimal repair policies approximated by neural networks are trained by a multi-agent deep reinforcement learning algorithm, considering uncertainties of the restoration process. The superiority and efficiency of the proposed method are demonstrated through a case study of the Tsinghua University campus, where different decision-making objectives are considered. The results show that the recovery trajectories determined by the proposed model have the highest performance compared to conventional methods. Besides, the proposed methodology based on transfer learning can achieve high computational efficiency for new damage scenarios. This model is promising to be a high-performance, robust decision-support tool for post-hazard repairing decisions.

Suggested Citation

  • Yang, Sen & Zhang, Yi & Lu, Xinzheng & Guo, Wei & Miao, Huiquan, 2024. "Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006683
    DOI: 10.1016/j.ress.2023.109754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.