IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002194.html
   My bibliography  Save this article

Reinforcement learning based maintenance scheduling of flexible multi-machine manufacturing systems with varying interactive degradation

Author

Listed:
  • Chen, Jiangxi
  • Zhou, Xiaojun

Abstract

In flexible multi-machine manufacturing systems, variations in product types dynamically influence machine loads, subsequently affecting the degradation processes of the machines. Moreover, the interactive degradation between the upstream and downstream machines, caused by the product quality deviations, changes with the different production routes for the variable product types. These factors, combined with the uncertain production schedules, present significant challenges for effective maintenance scheduling. To address these challenges, the maintenance scheduling problem is modeled as a Hidden-Mode Markov Decision Process (HM-MDP), where product types are treated as hidden modes that influence machine degradation and the subsequent maintenance decisions. The Interactive Degradation-Aware Proximal Policy Optimization (IDAPPO) reinforcement learning framework is introduced, enhancing the PPO algorithm with Graph Neural Networks (GNNs) to capture interactive degradation among machines and Long Short-Term Memory (LSTM) networks to handle temporal variations in production schedules. An entropy-based exploration strategy further manages the uncertainty of production schedules, enabling IDAPPO to adaptively optimize maintenance actions. Extensive experiments on both small-scale (5-machine) and large-scale (24-machine) systems demonstrate significantly reduced system losses and accelerated convergence of IDAPPO compared to the baseline approaches. These results indicate that IDAPPO provides a scalable and adaptive solution for improving the efficiency and reliability of complex manufacturing environments.

Suggested Citation

  • Chen, Jiangxi & Zhou, Xiaojun, 2025. "Reinforcement learning based maintenance scheduling of flexible multi-machine manufacturing systems with varying interactive degradation," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002194
    DOI: 10.1016/j.ress.2025.111018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.