Reinforcement learning based maintenance scheduling of flexible multi-machine manufacturing systems with varying interactive degradation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2025.111018
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huidong Zhang & Dragan Djurdjanovic, 2022. "Integrated production and maintenance planning under uncertain demand with concurrent learning of yield rate," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 429-450, June.
- Lee, Jun S. & Yeo, In-Ho & Bae, Younghoon, 2024. "A stochastic track maintenance scheduling model based on deep reinforcement learning approaches," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Yang, Ao & Qiu, Qingan & Zhu, Mingren & Cui, Lirong & Chen, Weilin & Chen, Jianhui, 2022. "Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Hu, Jiawen & Jiang, Zuhua & Liao, Haitao, 2017. "Preventive maintenance of a single machine system working under piecewise constant operating condition," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 105-115.
- Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Rokhforoz, Pegah & Montazeri, Mina & Fink, Olga, 2023. "Safe multi-agent deep reinforcement learning for joint bidding and maintenance scheduling of generation units," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Zhou, Xiaojun & Yu, Mengqi, 2020. "Semi-dynamic maintenance scheduling for multi-station series systems in multi-specification and small-batch production," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Zhou, Yifan & Li, Bangcheng & Lin, Tian Ran, 2022. "Maintenance optimisation of multicomponent systems using hierarchical coordinated reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Xiaojun Zhou & Mixin Zhu & Wenli Yu, 2021. "Maintenance scheduling for flexible multistage manufacturing systems with uncertain demands," International Journal of Production Research, Taylor & Francis Journals, vol. 59(19), pages 5831-5843, October.
- Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Liu, Hengchang & Li, Bo & Yao, Fengming & Hu, Gexi & Xie, Lei, 2024. "Maintenance optimization of multi-unit balanced systems using deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Hendradewa, Andrie Pasca & Yin, Shen, 2025. "Comparative analysis of offshore wind turbine blade maintenance: RL-based and classical strategies for sustainable approach," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
- Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
- Sun, Yong & Ma, Lin & Mathew, Joseph & Zhang, Sheng, 2006. "An analytical model for interactive failures," Reliability Engineering and System Safety, Elsevier, vol. 91(5), pages 495-504.
- Hamida, Zachary & Goulet, James-A., 2023. "Hierarchical reinforcement learning for transportation infrastructure maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Thomas A. Mazzuchi & Refik Soyer, 1989. "Assessment of machine tool reliability using a proportional hazards model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(6), pages 765-777, December.
- Li Li & Yong Wang & Kuo-Yi Lin, 2021. "Preventive maintenance scheduling optimization based on opportunistic production-maintenance synchronization," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 545-558, February.
- Philip J. Boland, 1982. "Periodic replacement when minimal repair costs vary with time," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(4), pages 541-546, December.
- Zhang, Qin & Liu, Yu & Xiang, Yisha & Xiahou, Tangfan, 2024. "Reinforcement learning in reliability and maintenance optimization: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Philip J. Boland & Frank Proschan, 1982. "Periodic Replacement with Increasing Minimal Repair Costs at Failure," Operations Research, INFORMS, vol. 30(6), pages 1183-1189, December.
- Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Sangqi & Wei, Yian & Cheng, Yao & Li, Yang, 2025. "A state-specific joint size, maintenance, and inventory policy for a k-out-of-n load-sharing system subject to self-announcing failures," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
- Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Zhang, Huixian & Wei, Xiukun & Liu, Zhiqiang & Ding, Yaning & Guan, Qingluan, 2025. "Condition-based maintenance for multi-state systems with prognostic and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
- Ferreira Neto, Waldomiro Alves & VirgÃnio Cavalcante, Cristiano Alexandre & Do, Phuc, 2024. "Deep reinforcement learning for maintenance optimization of a scrap-based steel production line," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Zhang, Qin & Liu, Yu & Xiang, Yisha & Xiahou, Tangfan, 2024. "Reinforcement learning in reliability and maintenance optimization: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Anwar, Ghazanfar Ali & Zhang, Xiaoge, 2024. "Deep reinforcement learning for intelligent risk optimization of buildings under hazard," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Yang, Sen & Zhang, Yi & Lu, Xinzheng & Guo, Wei & Miao, Huiquan, 2024. "Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Zheng, Meimei & Su, Zhiyun & Wang, Dong & Pan, Ershun, 2024. "Joint maintenance and spare part ordering from multiple suppliers for multicomponent systems using a deep reinforcement learning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Mikhail, Mina & Ouali, Mohamed-Salah & Yacout, Soumaya, 2024. "A data-driven methodology with a nonparametric reliability method for optimal condition-based maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Andersen, Jesper Fink & Nielsen, Bo Friis, 2025. "A comparative study of time-based maintenance and condition-based maintenance for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Liu, Hengchang & Li, Bo & Yao, Fengming & Hu, Gexi & Xie, Lei, 2024. "Maintenance optimization of multi-unit balanced systems using deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Zhang, Dingyang & Zhang, Yiming & Li, Pei & Zhang, Shuyou, 2025. "Kernel Reinforcement Learning for sampling-efficient risk management of large-scale engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
- Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Pliego Marugán, Alberto & Pinar-Pérez, Jesús M. & GarcÃa Márquez, Fausto Pedro, 2024. "A reinforcement learning agent for maintenance of deteriorating systems with increasingly imperfect repairs," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Guo, Yuanyuan & Sun, Youchao & Si, Qingmin & Guo, Xinyao & Chen, Nongtian, 2025. "Probabilistic risk assessment of civil aircraft associated failures under condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Ye, Zhenggeng & Cai, Zhiqiang & Yang, Hui & Si, Shubin & Zhou, Fuli, 2023. "Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
More about this item
Keywords
Flexible manufacturing system; Maintenance scheduling; Interactive degradation; Hidden-Mode Markov Decision Process; Reinforcement learning; Graph neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002194. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.