IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002794.html
   My bibliography  Save this article

Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning

Author

Listed:
  • Yang, Ao
  • Qiu, Qingan
  • Zhu, Mingren
  • Cui, Lirong
  • Chen, Weilin
  • Chen, Jianhui

Abstract

The condition-based maintenance (CBM) decision-making for redundant systems has attracted increasing attention. Most existing studies are dedicated to k-out-of-n redundant systems and the search of the optimal maintenance policy is efficient for low-dimensional CBM. In practical applications, complex system structures and failure criteria are commonly observed, posing challenges for searching the optimal CBM policy. This paper studies the optimal CBM strategy for redundant systems with arbitrary system structures using improved reinforcement learning, considering failure and economic dependences. The decisions of imperfect repair and replacement of failed components are considered dynamically, and an efficient solution method of dynamic maintenance strategy is investigated via improved reinforcement learning incorporating re-learning and pre-learning processes. Numerical studies are conducted and the results indicate that the proposed method is effective in reducing the maintenance cost and efficient in searching the optimal CBM strategy for redundant systems.

Suggested Citation

  • Yang, Ao & Qiu, Qingan & Zhu, Mingren & Cui, Lirong & Chen, Weilin & Chen, Jianhui, 2022. "Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002794
    DOI: 10.1016/j.ress.2022.108643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    2. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "State-based mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Ye, Meng-Hua, 1990. "Optimal replacement policy with stochastic maintenance and operation costs," European Journal of Operational Research, Elsevier, vol. 44(1), pages 84-94, January.
    4. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.
    5. Zhang, Nan & Fouladirad, Mitra & Barros, Anne & Zhang, Jun, 2020. "Condition-based maintenance for a K-out-of-N deteriorating system under periodic inspection with failure dependence," European Journal of Operational Research, Elsevier, vol. 287(1), pages 159-167.
    6. Liu, Bin & Pandey, Mahesh D. & Wang, Xiaolin & Zhao, Xiujie, 2021. "A finite-horizon condition-based maintenance policy for a two-unit system with dependent degradation processes," European Journal of Operational Research, Elsevier, vol. 295(2), pages 705-717.
    7. Li, Heping & Deloux, Estelle & Dieulle, Laurence, 2016. "A condition-based maintenance policy for multi-component systems with Lévy copulas dependence," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 44-55.
    8. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    9. Koosha Rafiee & Qianmei Feng & David Coit, 2014. "Reliability modeling for dependent competing failure processes with changing degradation rate," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 483-496.
    10. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    11. Yunyi Kang & Feng Ju, 2019. "Flexible preventative maintenance for serial production lines with multi-stage degrading machines and finite buffers," IISE Transactions, Taylor & Francis Journals, vol. 51(7), pages 777-791, July.
    12. Ma, Xiaoyang & Liu, Bin & Yang, Li & Peng, Rui & Zhang, Xiaodong, 2020. "Reliability analysis and condition-based maintenance optimization for a warm standby cooling system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Wang, Jingjing & Qiu, Qingan & Wang, Huanhuan, 2021. "Joint optimization of condition-based and age-based replacement policy and inventory policy for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Rasmekomen, Nipat & Parlikad, Ajith Kumar, 2016. "Condition-based maintenance of multi-component systems with degradation state-rate interactions," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 1-10.
    15. Yousefi, Nooshin & Coit, David W. & Song, Sanling & Feng, Qianmei, 2019. "Optimization of on-condition thresholds for a system of degrading components with competing dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    16. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2016. "Clustering condition-based maintenance for systems with redundancy and economic dependencies," European Journal of Operational Research, Elsevier, vol. 251(2), pages 531-540.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Zheng, Meimei & Su, Zhiyun & Wang, Dong & Pan, Ershun, 2024. "Joint maintenance and spare part ordering from multiple suppliers for multicomponent systems using a deep reinforcement learning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Gan, Shuyuan & Hu, Hengheng & Coit, David W., 2023. "Maintenance optimization considering the mutual dependence of the environment and system with decreasing effects of imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Yaguang Wu, 2023. "Optimal Stopping and Loading Rules Considering Multiple Attempts and Task Success Criteria," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    7. Cheng, Dawei & Lu, Zhong & Zhou, Jia & Liang, Xihui, 2023. "An optimizing maintenance policy for airborne redundant systems operating with faults by using Markov process and NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Zhihua Chen & Xuchen Xu & Hongbo Liu, 2023. "The Successive Approximation Genetic Algorithm (SAGA) for Optimization Problems with Single Constraint," Mathematics, MDPI, vol. 11(8), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Zhou, Yifan & Li, Bangcheng & Lin, Tian Ran, 2022. "Maintenance optimisation of multicomponent systems using hierarchical coordinated reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    4. Wang, Liying & Song, Yushuang & Zhang, Wenhua & Ling, Xiaoliang, 2023. "Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    6. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    7. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    8. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    9. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2017. "Joint condition-based maintenance and inventory optimization for systems with multiple components," European Journal of Operational Research, Elsevier, vol. 257(1), pages 209-222.
    10. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    11. Zhang, Wenyu & Zhang, Xiaohong & He, Shuguang & Zhao, Xing & He, Zhen, 2024. "Optimal condition-based maintenance policy for multi-component repairable systems with economic dependence in a finite-horizon," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    13. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    14. Wang, Jingjing & Zheng, Rui & Lin, Tianran, 2022. "Maintenance modeling for balanced systems subject to two competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Zhang, Nan & Cai, Kaiquan & Deng, Yingjun & Zhang, Jun, 2024. "Joint optimization of condition-based maintenance and condition-based production of a single equipment considering random yield and maintenance delay," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    17. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    18. Xia, Tangbin & Sun, Bowen & Chen, Zhen & Pan, Ershun & Wang, Hao & Xi, Lifeng, 2021. "Opportunistic maintenance policy integrating leasing profit and capacity balancing for serial-parallel leased systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    19. Kong, Xuefeng & Yang, Jun, 2020. "Reliability analysis of composite insulators subject to multiple dependent competing failure processes with shock duration and shock damage self-recovery," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.