IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002376.html
   My bibliography  Save this article

Balancing information and predictability: A pan latent feature model for plant-wide oscillations root cause analysis

Author

Listed:
  • Wang, Yang
  • Dong, Yining

Abstract

Analyzing the root cause for plant-wide oscillations is critical for maintaining the reliability and safety of complex systems with control loops. Oscillations in complex systems display varying degrees of predictability and information content. However, existing methods typically focus on a single aspect, which inherently restricts their comprehensiveness, flexibility, and accuracy of diagnosis. To address these challenges, this paper presents a novel pan-latent feature (PLF) modeling-based root cause analysis approach for plant-wide oscillations. PLF flexibly explores both predictability and information content within a unified model to extract informative, predictable, and a novel type of intermediate LFs that balance both attributes, enabling the comprehensive and flexible extraction of multi-type oscillations. By establishing explicit relationships between the extracted features and the original variables, PLF diagnoses the root cause variables of the extracted multi-type oscillations, providing multi-perspective diagnosis results. Through a numerical case study and a real-world plant-wide oscillation application, the proposed method demonstrates superior comprehensiveness, flexibility, and accuracy in finding the root variables of multi-type oscillations compared to existing approaches.

Suggested Citation

  • Wang, Yang & Dong, Yining, 2025. "Balancing information and predictability: A pan latent feature model for plant-wide oscillations root cause analysis," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002376
    DOI: 10.1016/j.ress.2025.111036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    4. Huang, Zhelin & Ma, Zhihua, 2024. "Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Zhang, Jiaxin & Rangaiah, Gade Pandu & Dong, Lichun & Samavedham, Lakshminarayanan, 2025. "An improved industrial fault diagnosis model by integrating enhanced variational mode decomposition with sparse process monitoring method," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    6. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    7. Zhang, Chen & Hu, Di & Yang, Tao, 2024. "Research of artificial intelligence operations for wind turbines considering anomaly detection, root cause analysis, and incremental training," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Datteo, Alessio & Busca, Giorgio & Quattromani, Gianluca & Cigada, Alfredo, 2018. "On the use of AR models for SHM: A global sensitivity and uncertainty analysis framework," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 99-115.
    9. Wei, Yujie & Chen, Zhen & Ye, Zhi-Sheng & Pan, Ershun, 2024. "High-dimensional process monitoring under time-varying operating conditions via covariate-regulated principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    10. Zheng, Niannian & Luan, Xiaoli & Shardt, Yuri A.W. & Liu, Fei, 2024. "Dynamic-controlled principal component analysis for fault detection and automatic recovery," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Xu, Jinjin & Wang, Rongxi & Liang, Zeming & Liu, Pengpeng & Gao, Jianmin & Wang, Zhen, 2023. "Physics-guided, data-refined fault root cause tracing framework for complex electromechanical system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Fang, Xiaoyu & Qu, Jianfeng & Chai, Yi, 2023. "Self-supervised intermittent fault detection for analog circuits guided by prior knowledge," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Jin, Wenhao & Wang, Wenjing & Wang, Yang & Cao, Zhixing & Jiang, Qingchao, 2024. "Distributed monitoring of nonlinear plant-wide processes based on GA-regularized kernel canonical correlation analysis," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    15. Ghostine, Rony & Thiriet, Jean-Marc & Aubry, Jean-François, 2011. "Variable delays and message losses: Influence on the reliability of a control loop," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 160-171.
    16. El-Awady, Ahmed & Ponnambalam, Kumaraswamy, 2021. "Integration of simulation and Markov Chains to support Bayesian Networks for probabilistic failure analysis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    2. Samia Maza, 2014. "Stochastic activity networks for performance evaluation of fault-tolerant systems," Journal of Risk and Reliability, , vol. 228(3), pages 243-253, June.
    3. Peng, Dandan & Desmet, Wim & Gryllias, Konstantinos, 2025. "Reconstruction-based Deep Unsupervised Adaptive Threshold Support Vector Data Description for wind turbine anomaly detection," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    4. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Lei, Zihao & Wen, Guangrui & Chen, Xuefeng, 2025. "Unsupervised anomaly detection of machines operating under time-varying conditions: DCD-VAE enabled feature disentanglement of operating conditions and states," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    5. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Hendradewa, Andrie Pasca & Yin, Shen, 2025. "Comparative analysis of offshore wind turbine blade maintenance: RL-based and classical strategies for sustainable approach," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    7. Guan, Yang & Meng, Zong & Gu, Fengshou & Cao, Yanling & Li, Dongqin & Miao, Xiaopeng & Ball, Andrew D., 2025. "Fault diagnosis of wind turbine structures with a triaxial vibration dual-branch feature fusion network," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    8. Zhang, Ruixing & An, Liqiang & Yang, Xinmeng & He, Lun & Huang, Zenghao, 2025. "A distributed inference method integrating causal analysis and surrogate models for optimizing tuned mass damper parameters to enhance offshore wind turbine safety," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    9. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    10. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    11. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    12. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    13. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    14. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    16. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    17. Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
    18. Edward J. Oughton & Daniel Ralph & Raghav Pant & Eireann Leverett & Jennifer Copic & Scott Thacker & Rabia Dada & Simon Ruffle & Michelle Tuveson & Jim W Hall, 2019. "Stochastic Counterfactual Risk Analysis for the Vulnerability Assessment of Cyber‐Physical Attacks on Electricity Distribution Infrastructure Networks," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2012-2031, September.
    19. Coraça, Eduardo M. & Ferreira, Janito V. & Nóbrega, Eurípedes G.O., 2023. "An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    20. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.