IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002376.html
   My bibliography  Save this article

Balancing information and predictability: A pan latent feature model for plant-wide oscillations root cause analysis

Author

Listed:
  • Wang, Yang
  • Dong, Yining

Abstract

Analyzing the root cause for plant-wide oscillations is critical for maintaining the reliability and safety of complex systems with control loops. Oscillations in complex systems display varying degrees of predictability and information content. However, existing methods typically focus on a single aspect, which inherently restricts their comprehensiveness, flexibility, and accuracy of diagnosis. To address these challenges, this paper presents a novel pan-latent feature (PLF) modeling-based root cause analysis approach for plant-wide oscillations. PLF flexibly explores both predictability and information content within a unified model to extract informative, predictable, and a novel type of intermediate LFs that balance both attributes, enabling the comprehensive and flexible extraction of multi-type oscillations. By establishing explicit relationships between the extracted features and the original variables, PLF diagnoses the root cause variables of the extracted multi-type oscillations, providing multi-perspective diagnosis results. Through a numerical case study and a real-world plant-wide oscillation application, the proposed method demonstrates superior comprehensiveness, flexibility, and accuracy in finding the root variables of multi-type oscillations compared to existing approaches.

Suggested Citation

  • Wang, Yang & Dong, Yining, 2025. "Balancing information and predictability: A pan latent feature model for plant-wide oscillations root cause analysis," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002376
    DOI: 10.1016/j.ress.2025.111036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.