IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220318922.html
   My bibliography  Save this article

Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities

Author

Listed:
  • Senderov, Sergey M.
  • Smirnova, Elena M.
  • Vorobev, Sergey V.

Abstract

The paper proposes a new approach to the analysis of the vulnerability of fuel supply to regions that consume natural gas when critical facilities (CFs) of the gas industry stop operating. The feature distinguishing this approach from the known ones is that it simultaneously considers indices of a natural gas share in the structure of regional fuel and energy balance and configuration of the main gas pipeline network that serves the regions. This approach involves specialized multi-iterative studies, which have made it possible for the first time to identify the gas industry facilities that are critical for gas supply to the regions. Investigation of various shutdown options for these facilities determines the regions, which are most susceptible to natural gas shortages in the event of emergencies in the gas industry.

Suggested Citation

  • Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318922
    DOI: 10.1016/j.energy.2020.118785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220318922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Möst, Dominik & Perlwitz, Holger, 2009. "Prospects of gas supply until 2020 in Europe and its relevance for the power sector in the context of emission trading," Energy, Elsevier, vol. 34(10), pages 1510-1522.
    2. Alan T. Murray & Timothy C. Matisziw & Tony H. Grubesic, 2008. "A Methodological Overview of Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 573-592, December.
    3. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    4. Monforti, F. & Szikszai, A., 2010. "A MonteCarlo approach for assessing the adequacy of the European gas transmission system under supply crisis conditions," Energy Policy, Elsevier, vol. 38(5), pages 2486-2498, May.
    5. Jonas Johansson & Henrik Hassel & Alexander Cedergren, 2011. "Vulnerability analysis of interdependent critical infrastructures: case study of the Swedish railway system," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 7(4), pages 289-316.
    6. Lochner, Stefan & Bothe, David, 2009. "The development of natural gas supply costs to Europe, the United States and Japan in a globalizing gas market--Model-based analysis until 2030," Energy Policy, Elsevier, vol. 37(4), pages 1518-1528, April.
    7. George E. Apostolakis, 2004. "How Useful Is Quantitative Risk Assessment?," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 515-520, June.
    8. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    9. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    10. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    11. Lochner, Stefan, 2011. "Identification of congestion and valuation of transport infrastructures in the European natural gas market," Energy, Elsevier, vol. 36(5), pages 2483-2492.
    12. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    13. Neumann, Anne & Viehrig, Norman & Weigt, Hannes, 2009. "InTraGas - A Stylized Model of the European Natural Gas Network," MPRA Paper 65652, University Library of Munich, Germany.
    14. Alan Murray & Timothy Matisziw & Tony Grubesic, 2007. "Critical network infrastructure analysis: interdiction and system flow," Journal of Geographical Systems, Springer, vol. 9(2), pages 103-117, June.
    15. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    16. Dieckhöner, Caroline & Lochner, Stefan & Lindenberger, Dietmar, 2013. "European natural gas infrastructure: The impact of market developments on gas flows and physical market integration," Applied Energy, Elsevier, vol. 102(C), pages 994-1003.
    17. Senderov, S.M. & Edelev, A.V., 2019. "Formation of a list of critical facilities in the gas transportation system of Russia in terms of energy security," Energy, Elsevier, vol. 184(C), pages 105-112.
    18. Tsavdaroglou, Margarita & Al-Jibouri, Saad H.S. & Bles, Thomas & Halman, Johannes I.M., 2018. "Proposed methodology for risk analysis of interdependent critical infrastructures to extreme weather events," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 57-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Senderov, Sergey M. & Vorobev, Sergey V. & Smirnova, Elena M., 2022. "Peak underground gas storage efficiency in reducing the vulnerability of gas supply to consumers in an extensive gas transmission system," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Senderov, Sergey M. & Vorobev, Sergey V. & Smirnova, Elena M., 2022. "Peak underground gas storage efficiency in reducing the vulnerability of gas supply to consumers in an extensive gas transmission system," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Dieckhöner, Caroline & Lochner, Stefan & Lindenberger, Dietmar, 2013. "European natural gas infrastructure: The impact of market developments on gas flows and physical market integration," Applied Energy, Elsevier, vol. 102(C), pages 994-1003.
    3. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    4. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    5. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    6. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    7. Senderov, S.M. & Edelev, A.V., 2019. "Formation of a list of critical facilities in the gas transportation system of Russia in terms of energy security," Energy, Elsevier, vol. 184(C), pages 105-112.
    8. Lochner, Stefan, 2011. "Identification of congestion and valuation of transport infrastructures in the European natural gas market," Energy, Elsevier, vol. 36(5), pages 2483-2492.
    9. Fenyu, Zeng & Jiamei, Li, 2024. "Research on EU natural gas security and countermeasures based on two-dimensional cloud model," Energy, Elsevier, vol. 305(C).
    10. Corrado lo Storto, 2019. "An SNA-DEA Prioritization Framework to Identify Critical Nodes of Gas Networks: The Case of the US Interstate Gas Infrastructure," Energies, MDPI, vol. 12(23), pages 1-18, December.
    11. Galvan, Giulio & Agarwal, Jitendra, 2020. "Assessing the vulnerability of infrastructure networks based on distribution measures," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    12. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    13. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    14. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    15. Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    16. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    17. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    18. Vitor Miguel Ribeiro & Gustavo Soutinho & Isabel Soares, 2023. "Natural Gas Prices in the Framework of European Union’s Energy Transition: Assessing Evolution and Drivers," Energies, MDPI, vol. 16(4), pages 1-46, February.
    19. Abrell, Jan & Chavaz, Léo & Weigt, Hannes, 2019. "Dealing with Supply Disruptions on the European Natural Gas Market: Infrastructure Investments or Coordinated Policies?," Working papers 2019/11, Faculty of Business and Economics - University of Basel.
    20. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.