IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v255y2025ics0951832024007233.html
   My bibliography  Save this article

Machine remaining useful life prediction method based on global-local attention compensation network

Author

Listed:
  • Chen, Zhixiang

Abstract

Accurate remaining useful life (RUL) prediction is essential for ensuring the safe operation of machinery. The extraction of high-level features that contain both global dependencies and local refinements can effectively improve the accuracy of RUL predictions. In order to extract high-level features, this paper proposes a global-local attention compensation network (GLACN) for RUL prediction. The proposed network integrates a global interaction-feature (GIF) mechanism, a long short-term memory network (LSTM), and a local attention enhanced residual compensation (LAERC) mechanism. Initially, the GIF mechanism is used to processed selected signals from multiple sensors to facilitate global information interaction and allocate channel attention weights. Subsequently, the LSTM is employed to extract global temporal features and establish long-term dependencies among them. Finally, the global temporal features extracted by LSTM are further refined by LAERC to mine local features. To address the potential weakening of long-term dependencies during feature refinement, the global temporal features from the last hidden layer of LSTM are utilized as compensation, concatenated with refined features to generate final features. The effectiveness of the designed model for RUL prediction is tested by two benchmark datasets. The results illustrate that the prediction performance of the GLACN outperforms some of some state-of-the-art (SOTA) methods.

Suggested Citation

  • Chen, Zhixiang, 2025. "Machine remaining useful life prediction method based on global-local attention compensation network," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007233
    DOI: 10.1016/j.ress.2024.110652
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xin & Sun, Jiankai & Wang, Jiaxu & Jin, Yulin & Wang, Lei & Liu, Zhiwen, 2023. "PAOLTransformer: Pruning-adaptive optimal lightweight Transformer model for aero-engine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    2. Xiang, Sheng & Li, Penghua & Huang, Yi & Luo, Jun & Qin, Yi, 2024. "Single gated RNN with differential weighted information storage mechanism and its application to machine RUL prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Cao, Yudong & Ding, Yifei & Jia, Minping & Tian, Rushuai, 2021. "A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Huang, Zhifu & Yang, Yang & Hu, Yawei & Ding, Xiang & Li, Xuanlin & Liu, Yongbin, 2023. "Attention-augmented recalibrated and compensatory network for machine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Zhang, Yadong & Zhang, Chao & Wang, Shaoping & Dui, Hongyan & Chen, Rentong, 2024. "Health indicators for remaining useful life prediction of complex systems based on long short-term memory network and improved particle filter," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    9. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Zhang, Yuru & Su, Chun & Wu, Jiajun & Liu, Hao & Xie, Mingjiang, 2024. "Trend-augmented and temporal-featured Transformer network with multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Kim, Gyeongho & Kang, Yun Seok & Yang, Sang Min & Choi, Jae Gyeong & Hwang, Gahyun & Park, Hyung Wook & Lim, Sunghoon, 2025. "Fisher-informed continual learning for remaining useful life prediction of machining tools under varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    5. Li, Xuanlin & Hu, Yawei & Wang, Hang & Liu, Yongbin & Liu, Xianzeng & Lu, Huitian, 2025. "A closed-form continuous-depth neural-based hybrid difference features re-representation network for RUL prediction," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    6. Lin, Chaojing & Chen, Yunxiao & Bai, Mingliang & Long, Zhenhua & Yao, Peng & Liu, Jinfu & Yu, Daren, 2025. "Improved multiple penalty mechanism based loss function for more realistic aeroengine RUL advanced prediction," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    7. Cao, Yudong & Zhuang, Jichao & Miao, Qiuhua & Jia, Minping & Feng, Ke & Zhao, Xiaoli & Yan, Xiaoan & Ding, Peng, 2024. "Source-free domain adaptation for transferable remaining useful life prediction of machine considering source data absence," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    9. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    10. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Zheng, Yu & Chen, Liang & Bao, Xiangyu & Zhao, Fei & Zhong, Jingshu & Wang, Chenhan, 2025. "Prediction model optimization of gas turbine remaining useful life based on transfer learning and simultaneous distillation pruning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    12. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Wang, Chen & Zhang, Liming & Chen, Ling & Tan, Tian & Zhang, Cong, 2025. "Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    14. Wang, Wei & Song, Honghao & Si, Shubin & Lu, Wenhao & Cai, Zhiqiang, 2024. "Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    15. Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Li, Xiang & Luo, Hao & Yin, Shen, 2022. "Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    16. Yang, Jing & Wang, Xiaomin, 2024. "Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    17. Zhu, Qixiang & Zhou, Zheng & Li, Yasong & Yan, Ruqiang, 2024. "Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    18. Asgari, Ali & Si, Wujun & Wei, Wei & Krishnan, Krishna & Liu, Kunpeng, 2025. "Multivariate degradation modeling using generalized cauchy process and application in life prediction of dye-sensitized solar cells," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    19. Hervé de Beaulieu, Martin & Jha, Mayank Shekhar & Garnier, Hugues & Cerbah, Farid, 2024. "Remaining Useful Life prediction based on physics-informed data augmentation," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    20. Asgari, Ali & Si, Wujun & Yuan, Liang & Krishnan, Krishna & Wei, Wei, 2024. "Multivariable degradation modeling and life prediction using multivariate fractional Brownian motion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.