IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v248y2024ics0951832024002369.html
   My bibliography  Save this article

Nonlinear slow-varying dynamics-assisted temporal graph transformer network for remaining useful life prediction

Author

Listed:
  • Gao, Zhan
  • Jiang, Weixiong
  • Wu, Jun
  • Dai, Tianjiao
  • Zhu, Haiping

Abstract

Remaining useful life (RUL) plays an important role in the prognostics and health management of mechanical systems. Recently, deep learning-based methods have been widely applied in the field of RUL prediction. However, there still suffer from two limitations. One is that the existing RUL prediction methods cannot capture spatial dependencies and long-term temporal dependencies. The other is that nonlinear slow-varying dynamics related to the degradation behavior have not been explored in the RUL prediction. To break these limitations, a nonlinear slow-varying dynamics-assisted temporal graph Transformer network (NSD-TGTN) is proposed in this paper for RUL prediction. NSD-TGTN can simultaneously capture and model spatiotemporal graphs and nonlinear slow-varying dynamics to achieve RUL prediction. Herein, the TGTN is developed to mine both spatial and long-term temporal dependencies for constructing the spatiotemporal features. And, nonlinear slow-varying features are built and introduced into the TGTN to enhance the RUL prediction capacity. Two datasets are utilized to validate the effectiveness and superiority of the proposed method. Compared with existing advanced methods, the average prediction accuracies of the NSD-TGTN on the C-MAPSS dataset and the wear dataset are improved by 1.70 % and 8.22 %, respectively.

Suggested Citation

  • Gao, Zhan & Jiang, Weixiong & Wu, Jun & Dai, Tianjiao & Zhu, Haiping, 2024. "Nonlinear slow-varying dynamics-assisted temporal graph transformer network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002369
    DOI: 10.1016/j.ress.2024.110162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:248:y:2024:i:c:s0951832024002369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.