IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics095183202300683x.html
   My bibliography  Save this article

Transmission reliability evaluation of wireless sensor networks considering channel capacity randomness and energy consumption failure

Author

Listed:
  • Wang, Ning
  • Tian, Tian-zi
  • He, Jia-tao
  • Zhang, Chang-zhen
  • Yang, Jun

Abstract

The reliable transmission of data packets is the basis of ensuring the Internet of Things applications. Therefore, how to ensure the transmission reliability of wireless sensor networks has already become a hotspot. However, the existing researches ignore the effects of multiple fault modes and random factors on transmission reliability. Firstly, in the node reliability modeling, few studies have considered the effects of random failure and energy consumption failure comprehensively. Secondly, in the link reliability modeling, existing studies ignore the effect of the channel capacity randomness, which can lead to the erroneous estimation of transmission reliability. To overcome the above shortcomings, we propose a more realistic transmission reliability model. Firstly, considering the comprehensive effects of two failure modes, we establish a new node reliability model to better characterize the node performance. Secondly, considering the channel capacity randomness, we propose an improved SNR-Capacity connection model by deriving the one-hop connectivity probability, which can better characterize the link reliability. Then, we propose a transmission reliability evaluation model, and give the corresponding exact and approximate algorithms for its solution. Finally, taking the military Internet as an example, the effectiveness of the proposed method is verified.

Suggested Citation

  • Wang, Ning & Tian, Tian-zi & He, Jia-tao & Zhang, Chang-zhen & Yang, Jun, 2024. "Transmission reliability evaluation of wireless sensor networks considering channel capacity randomness and energy consumption failure," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s095183202300683x
    DOI: 10.1016/j.ress.2023.109769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300683X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kawahara, Jun & Sonoda, Koki & Inoue, Takeru & Kasahara, Shoji, 2019. "Efficient construction of binary decision diagrams for network reliability with imperfect vertices," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 142-154.
    2. Chaturvedi, S.K. & Khanna, Gaurav & Soh, Sieteng, 2018. "Reliability evaluation of time evolving Delay Tolerant Networks based on Sum-of-Disjoint products," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 136-151.
    3. Schäfer, Lukas & García, Sergio & Srithammavanh, Vassili, 2018. "Simplification of inclusion–exclusion on intersections of unions with application to network systems reliability," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 23-33.
    4. Dharmaraja, S. & Vinayak, Resham & Trivedi, Kishor S., 2016. "Reliability and survivability of vehicular ad hoc networks: An analytical approach," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 28-38.
    5. Xiang, Shihu & Yang, Jun, 2023. "A novel adaptive deployment method for the single-target tracking of mobile wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Guo, Kai & Ye, Zhisheng & Liu, Datong & Peng, Xiyuan, 2021. "UAV flight control sensing enhancement with a data-driven adaptive fusion model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Xiang, Shihu & Yang, Jun, 2018. "Performance reliability evaluation for mobile ad hoc networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 32-39.
    8. Wang, Ning & Xiao, Yiyong & Tian, Tianzi & Yang, Jun, 2023. "The optimal 5G base station location of the wireless sensor network considering timely reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Wang, Ning & Gao, Ying & He, Jia-tao & Yang, Jun, 2022. "Robustness evaluation of the air cargo network considering node importance and attack cost," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Wu, Shengna & Yang, Jun & Peng, Rui & Zhai, Qingqing, 2021. "Optimal design of facility allocation and maintenance strategy for a cellular network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Cui, Hongjun & Wang, Fei & Ma, Xinwei & Zhu, Minqing, 2022. "A novel fixed-node unconnected subgraph method for calculating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Zhang, Changzhen & Yang, Jun & Wang, Ning, 2023. "Timely reliability modeling and evaluation of wireless sensor networks with adaptive N-policy sleep scheduling," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Padmavathy, N. & Chaturvedi, Sanjay K., 2013. "Evaluation of mobile ad hoc network reliability using propagation-based link reliability model," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ning & Xiao, Yiyong & Tian, Tianzi & Yang, Jun, 2023. "The optimal 5G base station location of the wireless sensor network considering timely reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Alkaff, Abdullah & Qomarudin, Mochamad Nur & Bilfaqih, Yusuf, 2020. "Network reliability analysis: Matrix-exponential approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Xiang, Shihu & Yang, Jun, 2018. "Performance reliability evaluation for mobile ad hoc networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 32-39.
    5. Boardman, Nicholas T. & Sullivan, Kelly M., 2024. "Approximate dynamic programming for condition-based node deployment in a wireless sensor network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Xiang, Shihu & Yang, Jun, 2023. "A novel adaptive deployment method for the single-target tracking of mobile wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Zhang, Changzhen & Yang, Jun & Wang, Ning, 2023. "Timely reliability modeling and evaluation of wireless sensor networks with adaptive N-policy sleep scheduling," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Gaurav Khanna & S. K. Chaturvedi & Sieteng Soh, 2019. "Reliability evaluation of mobile ad hoc networks by considering link expiration time and border time," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 399-415, June.
    9. Bistouni, Fathollah & Jahanshahi, Mohsen, 2019. "Reliability-aware ring protection link selection in Ethernet ring mesh networks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Dui, Hongyan & Lu, Yaohui & Chen, Liwei, 2024. "Importance-based system cost management and failure risk analysis for different phases in life cycle," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Wu, Shengna & Yang, Jun & Peng, Rui & Zhai, Qingqing, 2021. "Optimal design of facility allocation and maintenance strategy for a cellular network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2021. "Resilient communication model for satellite networks using clustering technique," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Jones, Dylan & Firouzy, Sina & Labib, Ashraf & Argyriou, Athanasios V., 2022. "Multiple criteria model for allocating new medical robotic devices to treatment centres," European Journal of Operational Research, Elsevier, vol. 297(2), pages 652-664.
    15. Bistouni, Fathollah & Jahanshahi, Mohsen, 2014. "Analyzing the reliability of shuffle-exchange networks using reliability block diagrams," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 97-106.
    16. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. N. Padmavathy & Sanjay K. Chaturvedi, 2015. "Reliability evaluation of capacitated mobile ad hoc network using log-normal shadowing propagation model," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 9(1), pages 70-89.
    19. Fathollah Bistouni & Mohsen Jahanshahi, 2016. "Reliability analysis of multilayer multistage interconnection networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(3), pages 529-551, July.
    20. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s095183202300683x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.