IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v234y2023ics0951832023000509.html
   My bibliography  Save this article

A novel adaptive deployment method for the single-target tracking of mobile wireless sensor networks

Author

Listed:
  • Xiang, Shihu
  • Yang, Jun

Abstract

Single-target tracking is an important application of mobile wireless sensor networks. It is imperative to adaptively adjust the network deployment to achieve a satisfactory comprehensive tracking performance incorporating reliability, energy efficiency, connectivity, and tracking accuracy, which are all significant aspects for target tracking. However, the existing methods cannot ensure the optimization of the comprehensive tracking performance. Moreover, they are inapplicable to the realistic scenario with the common uncertainties, including the randomness of sensing, the randomness of received signal power, and the correlation between received signal powers. To solve these problems, a network model is proposed by modeling the common uncertainties to properly capture the characteristics of sensing and wireless communication. The reliability-energy index is defined to assess the comprehensive tracking performance. Furthermore, an adaptive deployment method is proposed to dynamically optimize the comprehensive tracking performance. Especially, to determine the optimal deployment at a sensing instant, an optimization algorithm is proposed by analyzing the monotonicity of the reliability-energy index and the impact of the positional relationship of nodes. Finally, a scenario of habitat monitoring is considered, and simulations are conducted to compare the proposed method with the existing methods to demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Xiang, Shihu & Yang, Jun, 2023. "A novel adaptive deployment method for the single-target tracking of mobile wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000509
    DOI: 10.1016/j.ress.2023.109135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023000509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Dongming & Lin, Jing & Cai, Baoping & Liu, Bin, 2021. "Robustness of maintenance support service networks: attributes, evaluation and improvement," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2009. "Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 218-228.
    3. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Chakraborty, Suparna & Goyal, N.K. & Mahapatra, S. & Soh, Sieteng, 2020. "A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Wang, Han & Zhao, Yu & Ma, Xiaobing & Wang, Hongyu, 2017. "Optimal design of constant-stress accelerated degradation tests using the M-optimality criterion," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 45-54.
    6. Mo, Yuchang & Xing, Liudong & Cui, Lirong & Si, Shubin, 2017. "MDD-based performability analysis of multi-state linear consecutive-k-out-of-n: F systems," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 124-131.
    7. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    8. M. H. Ling & P. S. Chan & H. K. T. Ng & N. Balakrishnan, 2021. "Copula models for one-shot device testing data with correlated failure modes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(16), pages 3875-3888, August.
    9. Xiang, Shihu & Yang, Jun, 2018. "Performance reliability evaluation for mobile ad hoc networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 32-39.
    10. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    11. Park, Jae-Hyun, 2017. "Time-dependent reliability of wireless networks with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 47-61.
    12. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    13. Wu, Shengna & Yang, Jun & Peng, Rui & Zhai, Qingqing, 2021. "Optimal design of facility allocation and maintenance strategy for a cellular network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Changzhen & Yang, Jun & Wang, Ning, 2023. "Timely reliability modeling and evaluation of wireless sensor networks with adaptive N-policy sleep scheduling," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ning & Xiao, Yiyong & Tian, Tianzi & Yang, Jun, 2023. "The optimal 5G base station location of the wireless sensor network considering timely reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Zhang, Changzhen & Yang, Jun & Wang, Ning, 2023. "Timely reliability modeling and evaluation of wireless sensor networks with adaptive N-policy sleep scheduling," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Qiu, Xiwei & Sun, Peng & Dai, Yuanshun, 2021. "Optimal task replication considering reliability, performance, and energy consumption for parallel computing in cloud systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Fu, Xiuwen & Yang, Yongsheng, 2020. "Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    6. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    7. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Ivona Brajević, 2021. "A Shuffle-Based Artificial Bee Colony Algorithm for Solving Integer Programming and Minimax Problems," Mathematics, MDPI, vol. 9(11), pages 1-20, May.
    12. Sheng, Yuhong & Ke, Hua, 2020. "Reliability evaluation of uncertain k-out-of-n systems with multiple states," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    14. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Nguyen, Khanh T.P. & Medjaher, Kamal & Gogu, Christian, 2022. "Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    19. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2018. "Constructing a Markov process for modelling a reliability system under multiple failures and replacements," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 34-47.
    20. Shihab Uddin & Qing Lu & Hung Nguyen, 2021. "Truck Impact on Buried Water Pipes in Interdependent Water and Road Infrastructures," Sustainability, MDPI, vol. 13(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.