IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1203.4786.html
   My bibliography  Save this paper

A flexible matrix Libor model with smiles

Author

Listed:
  • Jos'e Da Fonseca
  • Alessandro Gnoatto
  • Martino Grasselli

Abstract

We present a flexible approach for the valuation of interest rate derivatives based on Affine Processes. We extend the methodology proposed in Keller-Ressel et al. (2009) by changing the choice of the state space. We provide semi-closed-form solutions for the pricing of caps and floors. We then show that it is possible to price swaptions in a multifactor setting with a good degree of analytical tractability. This is done via the Edgeworth expansion approach developed in Collin-Dufresne and Goldstein (2002). A numerical exercise illustrates the flexibility of Wishart Libor model in describing the movements of the implied volatility surface.

Suggested Citation

  • Jos'e Da Fonseca & Alessandro Gnoatto & Martino Grasselli, 2012. "A flexible matrix Libor model with smiles," Papers 1203.4786, arXiv.org.
  • Handle: RePEc:arx:papers:1203.4786
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1203.4786
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
    2. JosE Da Fonseca & Martino Grasselli & Claudio Tebaldi, 2008. "A multifactor volatility Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 591-604.
    3. Gourieroux, Christian & Sufana, Razvan, 2011. "Discrete time Wishart term structure models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 815-824, June.
    4. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    5. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    6. Joshi, Mark & Yang, Chao, 2011. "Fast delta computations in the swap-rate market model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 764-775, May.
    7. Gourieroux, Christian & Sufana, Razvan, 2010. "Derivative Pricing With Wishart Multivariate Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 438-451.
    8. repec:wsi:ijtafx:v:14:y:2011:i:06:n:s0219024911006784 is not listed on IDEAS
    9. Jamshidian, Farshid, 1989. " An Exact Bond Option Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 205-209, March.
    10. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    11. Kenneth J. Singleton & Len Umantsev, 2002. "Pricing Coupon-Bond Options And Swaptions In Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 427-446.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    14. D. Brigo & F. Mercurio, 2003. "Analytical pricing of the smile in a forward LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 15-27.
    15. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 1-37, May.
    16. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    17. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    18. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    19. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    20. Schlögl, Erik, 2013. "Option pricing where the underlying assets follow a Gram/Charlier density of arbitrary order," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 611-632.
    21. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    22. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
    23. Zorana Grbac & Antonis Papapantoleon, 2012. "A tractable LIBOR model with default risk," Papers 1202.0587, arXiv.org, revised Oct 2012.
    24. Martino Grasselli & Claudio Tebaldi, 2008. "Solvable Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 135-153.
    25. Vladimir Piterbarg, 2005. "Stochastic Volatility Model with Time-dependent Skew," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(2), pages 147-185.
    26. Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
    27. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410.
    28. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Biagini & Alessandro Gnoatto & Maximilian Hartel, 2013. "Affine HJM Framework on $S_{d}^{+}$ and Long-Term Yield," Papers 1311.0688, arXiv.org, revised Aug 2015.
    2. Chiarella, Carl & Da Fonseca, José & Grasselli, Martino, 2014. "Pricing range notes within Wishart affine models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 193-203.
    3. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    4. Stefan Waldenberger & Wolfgang Muller, 2015. "Affine LIBOR models driven by real-valued affine processes," Papers 1503.00864, arXiv.org.
    5. Guarin, Alexander & Liu, Xiaoquan & Ng, Wing Lon, 2014. "Recovering default risk from CDS spreads with a nonlinear filter," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 87-104.
    6. Rama Cont & Lakshithe Wagalath, 2016. "Institutional Investors And The Dependence Structure Of Asset Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-37, March.
    7. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    8. Rama Cont & Lakshithe Wagalath, 2014. "Institutional Investors and the Dependence Structure of Asset Returns," Working Papers 2014-ACF-01, IESEG School of Management.

    More about this item

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1203.4786. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.