IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1106.0866.html
   My bibliography  Save this paper

Efficient and accurate log-L\'evy approximations to L\'evy driven LIBOR models

Author

Listed:
  • Antonis Papapantoleon
  • John Schoenmakers
  • David Skovmand

Abstract

The LIBOR market model is very popular for pricing interest rate derivatives, but is known to have several pitfalls. In addition, if the model is driven by a jump process, then the complexity of the drift term is growing exponentially fast (as a function of the tenor length). In this work, we consider a L\'evy-driven LIBOR model and aim at developing accurate and efficient log-L\'evy approximations for the dynamics of the rates. The approximations are based on truncation of the drift term and Picard approximation of suitable processes. Numerical experiments for FRAs, caps, swaptions and sticky ratchet caps show that the approximations perform very well. In addition, we also consider the log-L\'evy approximation of annuities, which offers good approximations for high volatility regimes.

Suggested Citation

  • Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-L\'evy approximations to L\'evy driven LIBOR models," Papers 1106.0866, arXiv.org, revised Jan 2012.
  • Handle: RePEc:arx:papers:1106.0866
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1106.0866
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
    2. Denis Belomestny & John Schoenmakers, 2010. "A jump-diffusion Libor model and its robust calibration," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 529-546.
    3. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    4. repec:wsi:ijtafx:v:04:y:2001:i:04:n:s0219024901001127 is not listed on IDEAS
    5. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    6. Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 327-344, December.
    7. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    8. Maximilian Beinhofer & Ernst Eberlein & Arend Janssen & Manuel Polley, 2011. "Correlations in Lévy interest rate models," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1315-1327, November.
    9. Mark Joshi & Alan Stacey, 2008. "New and robust drift approximations for the LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 427-434.
    10. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    11. Kohatsu-Higa, Arturo & Tankov, Peter, 2010. "Jump-adapted discretization schemes for Lévy-driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2258-2285, November.
    12. Belomestny Denis & Mathew Stanley & Schoenmakers John, 2009. "Multiple stochastic volatility extension of the Libor market model and its implementation," Monte Carlo Methods and Applications, De Gruyter, vol. 15(4), pages 285-310, January.
    13. Nicolas Merener & Paul Glasserman, 2003. "Numerical solution of jump-diffusion LIBOR market models," Finance and Stochastics, Springer, vol. 7(1), pages 1-27.
    14. Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
    15. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410.
    16. Tim Dun & Geoff Barton & Erik Schlögl, 2001. "Simulated Swaption Delta–Hedging In The Lognormal Forward Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 677-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zorana Grbac & David Krief & Peter Tankov, 2015. "Approximate Option Pricing in the L\'evy Libor Model," Papers 1511.08466, arXiv.org, revised Jul 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1106.0866. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.