IDEAS home Printed from
   My bibliography  Save this article

The Lévy LIBOR model


  • Ernst Eberlein


  • Fehmi Özkan



Models driven by Lévy processes are attractive because of their greater flexibility compared to classical diffusion models. First we derive the dynamics of the LIBOR rate process in a semimartingale as well as a Lévy Heath-Jarrow-Morton setting. Then we introduce a Lévy LIBOR market model. In order to guarantee positive rates, the LIBOR rate process is constructed as an ordinary exponential. Via backward induction we get that the rates are martingales under the corresponding forward measures. An explicit formula to price caps and floors which uses bilateral Laplace transforms is derived. Copyright Springer-Verlag Berlin/Heidelberg 2005

Suggested Citation

  • Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
  • Handle: RePEc:spr:finsto:v:9:y:2005:i:3:p:327-348
    DOI: 10.1007/s00780-004-0145-4

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    4. Lotz, Christopher & Schlogl, Lutz, 2000. "Default risk in a market model," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 301-327, January.
    5. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    6. Ernst Eberlein & Jean Jacod & Sebastian Raible, 2005. "Lévy term structure models: No-arbitrage and completeness," Finance and Stochastics, Springer, vol. 9(1), pages 67-88, January.
    7. Philipp J. Schönbucher, 2000. "A Libor Market Model with Default Risk," Bonn Econ Discussion Papers bgse15_2001, University of Bonn, Germany.
    8. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Giovanni Di Masi & Tomas Björk & Wolfgang Runggaldier & Yuri Kabanov, 1997. "Towards a general theory of bond markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 141-174.
    11. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    12. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Denis Belomestny & John Schoenmakers, 2010. "A jump-diffusion Libor model and its robust calibration," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 529-546.
    2. Belomestny Denis & Mathew Stanley & Schoenmakers John, 2009. "Multiple stochastic volatility extension of the Libor market model and its implementation," Monte Carlo Methods and Applications, De Gruyter, vol. 15(4), pages 285-310, January.
    3. Marcel Ladkau & John G. M. Schoenmakers & Jianing Zhang, 2012. "Libor model with expiry-wise stochastic volatility and displacement," Papers 1204.5698,
    4. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    5. Martin Keller-Ressel & Antonis Papapantoleon & Josef Teichmann, 2009. "The affine LIBOR models," Papers 0904.0555,, revised Jul 2011.
    6. Wolfgang Kluge & Antonis Papapantoleon, 2009. "On the valuation of compositions in Levy term structure models," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 951-959.
    7. Kohatsu-Higa, Arturo & Tankov, Peter, 2010. "Jump-adapted discretization schemes for Lévy-driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2258-2285, November.
    8. Leippold, Markus & Strømberg, Jacob, 2014. "Time-changed Lévy LIBOR market model: Pricing and joint estimation of the cap surface and swaption cube," Journal of Financial Economics, Elsevier, vol. 111(1), pages 224-250.
    9. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-L\'evy approximations to L\'evy driven LIBOR models," Papers 1106.0866,, revised Jan 2012.
    10. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-Lévi approximations to Lévi driven LIBOR models," CREATES Research Papers 2011-22, Department of Economics and Business Economics, Aarhus University.
    11. L. Steinruecke & R. Zagst & A. Swishchuk, 2015. "The Markov-switching jump diffusion LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 455-476, March.
    12. Antonis Papapantoleon & David Skovmand, 2010. "Picard Approximation of Stochastic Differential Equations and Application to Libor Models," CREATES Research Papers 2010-40, Department of Economics and Business Economics, Aarhus University.
    13. Antonis Papapantoleon & Maria Siopacha, 2009. "Strong Taylor approximation of stochastic differential equations and application to the L\'evy LIBOR model," Papers 0906.5581,, revised Oct 2010.
    14. Antonis Papapantoleon, 2010. "Old and new approaches to LIBOR modeling," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 257-275.
    15. Antonis Papapantoleon & David Skovmand, 2010. "Picard approximation of stochastic differential equations and application to LIBOR models," Papers 1007.3362,, revised Jul 2011.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:9:y:2005:i:3:p:327-348. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.