IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0910.4941.html
   My bibliography  Save this paper

Old and new approaches to LIBOR modeling

Author

Listed:
  • Antonis Papapantoleon

Abstract

In this article, we review the construction and properties of some popular approaches to modeling LIBOR rates. We discuss the following frameworks: classical LIBOR market models, forward price models and Markov-functional models. We close with the recently developed affine LIBOR models.

Suggested Citation

  • Antonis Papapantoleon, 2009. "Old and new approaches to LIBOR modeling," Papers 0910.4941, arXiv.org, revised Apr 2010.
  • Handle: RePEc:arx:papers:0910.4941
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0910.4941
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Denis Belomestny & John Schoenmakers, 2010. "A jump-diffusion Libor model and its robust calibration," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 529-546.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. Martin Keller-Ressel & Antonis Papapantoleon & Josef Teichmann, 2009. "The affine LIBOR models," Papers 0904.0555, arXiv.org, revised Jul 2011.
    4. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    5. Mark Joshi & Alan Stacey, 2008. "New and robust drift approximations for the LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 427-434.
    6. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    7. Robert Jarrow & Haitao Li & Feng Zhao, 2007. "Interest Rate Caps "Smile" Too! But Can the LIBOR Market Models Capture the Smile?," Journal of Finance, American Finance Association, vol. 62(1), pages 345-382, February.
    8. Joanne Kennedy & Phil Hunt & Antoon Pelsser, 2000. "Markov-functional interest rate models," Finance and Stochastics, Springer, vol. 4(4), pages 391-408.
    9. Belomestny Denis & Mathew Stanley & Schoenmakers John, 2009. "Multiple stochastic volatility extension of the Libor market model and its implementation," Monte Carlo Methods and Applications, De Gruyter, vol. 15(4), pages 285-310, January.
    10. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410.
    11. Lotz, Christopher & Schlogl, Lutz, 2000. "Default risk in a market model," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 301-327, January.
    12. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kathrin Glau & Zorana Grbac & Antonis Papapantoleon, 2016. "A unified view of LIBOR models," Papers 1601.01352, arXiv.org, revised Jul 2016.
    2. Zorana Grbac & Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2014. "Affine LIBOR models with multiple curves: theory, examples and calibration," Papers 1405.2450, arXiv.org, revised Aug 2015.
    3. Antonis Papapantoleon, 2010. "Old and new approaches to LIBOR modeling," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 257-275.
    4. Zorana Grbac & Antonis Papapantoleon, 2012. "A tractable LIBOR model with default risk," Papers 1202.0587, arXiv.org, revised Oct 2012.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0910.4941. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.