IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Yes, Libor Models can capture Interest Rate Derivatives Skew : A Simple Modelling Approach

  • Eymen Errais

    ()

    (Managment Science and Engineering Stanford University)

  • Fabio Mercurio
Registered author(s):

    We introduce a simple extension of a shifted geometric Brownian motion for modelling forward LIBOR rates under their canonical measures. The extension is based on a parameter uncertainty modelled through a random variable whose value is drawn at an in¯nitesimal time after zero. The shift in the proposed model captures the skew commonly seen in the cap market, whereas the uncertain volatility component allows us to obtain more symmetric implied volatility structures. We show how this model can be calibrated to cap prices. We also propose an analytical approximated formula to price swaptions from the cap calibrated model. Finally, we build the bridge between caps and swaptions market by calibrating the correlation structure to swaption prices, and analysing some implications of the calibrated model parameters

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://repec.org/sce2005/up.30400.1107018088.pdf
    Download Restriction: no

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2005 with number 192.

    as
    in new window

    Length:
    Date of creation: 11 Nov 2005
    Date of revision:
    Handle: RePEc:sce:scecf5:192
    Contact details of provider: Web page: http://comp-econ.org/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
    2. Goldstein, Robert S, 2000. "The Term Structure of Interest Rates as a Random Field," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 365-84.
    3. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-30, March.
    4. Santa-Clara, Pedro & Sornette, Didier, 2001. "The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 149-85.
    5. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    6. Leif Andersen & Jesper Andreasen, 2000. "Volatility skews and extensions of the Libor market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 1-32.
    7. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410.
    8. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    9. Feng Zhao & Robert Jarrow & Haitao Li, 2004. "Interest Rate Caps Smile Too! But Can the LIBOR Market Models Capture It?," Econometric Society 2004 North American Winter Meetings 431, Econometric Society.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:192. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.