IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v18y2008i1p135-153.html
   My bibliography  Save this article

Solvable Affine Term Structure Models

Author

Listed:
  • Martino Grasselli
  • Claudio Tebaldi

Abstract

An Affine Term Structure Model (ATSM) is said to be solvable if the pricing problem has an explicit solution, i.e., the corresponding Riccati ordinary differential equations have a regular globally integrable flow. We identify the parametric restrictions which are necessary and sufficient for an ATSM with continuous paths, to be solvable in a state space , where , the domain of positive factors, has the geometry of a symmetric cone. This class of state spaces includes as special cases those introduced by Duffie and Kan (1996), and Wishart term structure processes discussed by Gourieroux and Sufana (2003). For all solvable models we provide the procedure to find the explicit solution of the Riccati ODE.

Suggested Citation

  • Martino Grasselli & Claudio Tebaldi, 2008. "Solvable Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 135-153, January.
  • Handle: RePEc:bla:mathfi:v:18:y:2008:i:1:p:135-153
    DOI: 10.1111/j.1467-9965.2007.00325.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2007.00325.x
    Download Restriction: no

    References listed on IDEAS

    as
    1. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    2. Martino Grasselli & Claudio Tebaldi, 2004. "Bond Price and Impulse Response Function for the Balduzzi, Das, Foresi and Sundaram (1996) Model," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 33(3), pages 359-374, November.
    3. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    4. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    5. Christian Gourieroux & Razvan Sufana, 2003. "Whishart Quadratic Term Structure Models," Working Papers 2003-50, Center for Research in Economics and Statistics.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:18:y:2008:i:1:p:135-153. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.