IDEAS home Printed from
   My bibliography  Save this paper

Affine Term Structure Models


  • Cheridito, Patrick

    (Princeton U)

  • Filipovic, Damir

    (U of Munich)

  • Kimmel, Robert L.

    (Ohio State U)


Dai and Singleton (2000) study a class of term structure models for interest rates that specify the instantaneous interest rate as an affine combination of the components of an N-dimensional affine diffusion process. Observable quantities of such models are invariant under regular affine transformations of the underlying diffusion process. And in their canonical form, the models in Dai and Singleton (2000) are based on diffusion processes with diagonal diffusion matrices. This motivates the following question: Can the diffusion matrix of an affine diffusion process always be diagonalized by means of a regular affine transformation? We show that if the state space of the diffusion is of the form D = Rm+ x RN - m for integers 0 ? m? N satisfying m ? 1 or m ? N - 1, then there exists a regular affine transformation of D onto itself that diagonalizes the diffusion matrix. On the other hand, we provide examples of affine diffusion processes with state space R2+ x R2 whose diffusion matrices cannot be diagonalized through regular affine transformation.

Suggested Citation

  • Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2006. "Affine Term Structure Models," Working Paper Series 2007-2, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
  • Handle: RePEc:ecl:ohidic:2007-2

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    2. Andrea Buraschi & Paolo Porchia & Fabio Trojani, 2010. "Correlation Risk and Optimal Portfolio Choice," Journal of Finance, American Finance Association, vol. 65(1), pages 393-420, February.
    3. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    4. Christian Gourieroux & Razvan Sufana, 2006. "A Classification of Two-Factor Affine Diffusion Term Structure Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 31-52.
    5. Pierre Collin-Dufresne & Robert S. Goldstein & Christopher S. Jones, 2008. "Identification of Maximal Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 63(2), pages 743-795, April.
    6. Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2007. "Market price of risk specifications for affine models: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 83(1), pages 123-170, January.
    7. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    8. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    9. Egorov, Alexei V. & Li, Haitao & Ng, David, 2011. "A tale of two yield curves: Modeling the joint term structure of dollar and euro interest rates," Journal of Econometrics, Elsevier, vol. 162(1), pages 55-70, May.
    10. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    11. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    12. Samuel Thompson, 2008. "Identifying Term Structure Volatility from the LIBOR-Swap Curve," Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 819-854, April.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:ohidic:2007-2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.