IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v3y2003i1p59-65.html
   My bibliography  Save this article

Mathematical foundation of convexity correction

Author

Abstract

A broad class of exotic interest rate derivatives can be valued simply by adjusting the forward interest rate. This adjustment is known in the market as convexity correction. Various ad hoc rules are used to calculate the convexity correction for different products, many of them mutually inconsistent. In this research paper we put convexity correction on a firm mathematical basis by showing that it can be interpreted as the side-effect of a change of probability measure. This provides us with a theoretically consistent framework to calculate convexity corrections. Using this framework we review various expressions for LIBOR in arrears and diff swaps that have been derived in the literature. Furthermore, we propose a simple method to calculate analytical approximations for general instances of convexity correction.

Suggested Citation

  • A. Pelsser, 2003. "Mathematical foundation of convexity correction," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 59-65.
  • Handle: RePEc:taf:quantf:v:3:y:2003:i:1:p:59-65 DOI: 10.1088/1469-7688/3/1/306
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1088/1469-7688/3/1/306
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    3. Rudiger Frey & Daniel Sommer, 1996. "A systematic approach to pricing and hedging international derivatives with interest rate risk: analysis of international derivatives under stochastic interest rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 295-317.
    4. Eric Benhamou, 2002. "A Martingale Result for Convexity Adjustment in the Black Pricing Model," Finance 0212005, EconWPA.
    5. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Sharon S. & Yueh, Meng-Lan & Tang, Chun-Hua, 2008. "Valuation of the interest rate guarantee embedded in defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 920-934, June.
    2. Schrager, David F. & Pelsser, Antoon A.J., 2004. "Pricing Rate of Return Guarantees in Regular Premium Unit Linked Insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 369-398, October.
    3. Jiří Witzany, 2009. "Valuation of Convexity Related Interest Rate Derivatives," Prague Economic Papers, University of Economics, Prague, pages 309-326.
    4. Leccadito, Arturo & Tunaru, Radu S. & Urga, Giovanni, 2015. "Trading strategies with implied forward credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 361-375.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:3:y:2003:i:1:p:59-65. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.