IDEAS home Printed from
   My bibliography  Save this paper

Pricing of vanilla and first generation exotic options in the local stochastic volatility framework: survey and new results


  • Alexander Lipton
  • Andrey Gal
  • Andris Lasis


Stochastic volatility (SV) and local stochastic volatility (LSV) processes can be used to model the evolution of various financial variables such as FX rates, stock prices, and so on. Considerable efforts have been devoted to pricing derivatives written on underliers governed by such processes. Many issues remain, though, including the efficacy of the standard alternating direction implicit (ADI) numerical methods for solving SV and LSV pricing problems. In general, the amount of required computations for these methods is very substantial. In this paper we address some of these issues and propose a viable alternative to the standard ADI methods based on Galerkin-Ritz ideas. We also discuss various approaches to solving the corresponding pricing problems in a semi-analytical fashion. We use the fact that in the zero correlation case some of the pricing problems can be solved analytically, and develop a closed-form series expansion in powers of correlation. We perform a thorough benchmarking of various numerical solutions by using analytical and semi-analytical solutions derived in the paper.

Suggested Citation

  • Alexander Lipton & Andrey Gal & Andris Lasis, 2013. "Pricing of vanilla and first generation exotic options in the local stochastic volatility framework: survey and new results," Papers 1312.5693,
  • Handle: RePEc:arx:papers:1312.5693

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Agnieszka Janek & Tino Kluge & Rafał Weron & Uwe Wystup, 2010. "FX Smile in the Heston Model," SFB 649 Discussion Papers SFB649DP2010-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, June.
    3. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0501.
    4. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1312.5693. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.