IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1010.1617.html

FX Smile in the Heston Model

Author

Listed:
  • Agnieszka Janek
  • Tino Kluge
  • Rafal Weron
  • Uwe Wystup

Abstract

The Heston model stands out from the class of stochastic volatility (SV) models mainly for two reasons. Firstly, the process for the volatility is non-negative and mean-reverting, which is what we observe in the markets. Secondly, there exists a fast and easily implemented semi-analytical solution for European options. In this article we adapt the original work of Heston (1993) to a foreign exchange (FX) setting. We discuss the computational aspects of using the semi-analytical formulas, performing Monte Carlo simulations, checking the Feller condition, and option pricing with FFT. In an empirical study we show that the smile of vanilla options can be reproduced by suitably calibrating three out of five model parameters.

Suggested Citation

  • Agnieszka Janek & Tino Kluge & Rafal Weron & Uwe Wystup, 2010. "FX Smile in the Heston Model," Papers 1010.1617, arXiv.org.
  • Handle: RePEc:arx:papers:1010.1617
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1010.1617
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.1617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.