IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1206.6787.html
   My bibliography  Save this paper

Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results

Author

Listed:
  • Leif Andersen
  • Alexander Lipton

Abstract

Exponential L\'evy processes can be used to model the evolution of various financial variables such as FX rates, stock prices, etc. Considerable efforts have been devoted to pricing derivatives written on underliers governed by such processes, and the corresponding implied volatility surfaces have been analyzed in some detail. In the non-asymptotic regimes, option prices are described by the Lewis-Lipton formula which allows one to represent them as Fourier integrals; the prices can be trivially expressed in terms of their implied volatility. Recently, attempts at calculating the asymptotic limits of the implied volatility have yielded several expressions for the short-time, long-time, and wing asymptotics. In order to study the volatility surface in required detail, in this paper we use the FX conventions and describe the implied volatility as a function of the Black-Scholes delta. Surprisingly, this convention is closely related to the resolution of singularities frequently used in algebraic geometry. In this framework, we survey the literature, reformulate some known facts regarding the asymptotic behavior of the implied volatility, and present several new results. We emphasize the role of fractional differentiation in studying the tempered stable exponential Levy processes and derive novel numerical methods based on judicial finite-difference approximations for fractional derivatives. We also briefly demonstrate how to extend our results in order to study important cases of local and stochastic volatility models, whose close relation to the L\'evy process based models is particularly clear when the Lewis-Lipton formula is used. Our main conclusion is that studying asymptotic properties of the implied volatility, while theoretically exciting, is not always practically useful because the domain of validity of many asymptotic expressions is small.

Suggested Citation

  • Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
  • Handle: RePEc:arx:papers:1206.6787
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1206.6787
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Antoine Jacquier & Aleksandar Mijatović, 2014. "Large Deviations for the Extended Heston Model: The Large-Time Case," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(3), pages 263-280, September.
    2. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
    3. Agnieszka Janek & Tino Kluge & Rafal Weron & Uwe Wystup, 2010. "FX Smile in the Heston Model," HSC Research Reports HSC/10/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    5. Andrey Itkin & Peter Carr, 2012. "Using Pseudo-Parabolic and Fractional Equations for Option Pricing in Jump Diffusion Models," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 63-104, June.
    6. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    7. Martin Forde & Antoine Jacquier & Aleksandar Mijatovic, 2009. "Asymptotic formulae for implied volatility in the Heston model," Papers 0911.2992, arXiv.org, revised May 2010.
    8. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, June.
    9. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    10. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    11. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0501.
    12. Alexey Medvedev & Olivier Scaillet, "undated". "Approximation and Calibration of Short-Term Implied Volatilities under Jump-Diffusion Stochastic Volatility," Swiss Finance Institute Research Paper Series 06-08, Swiss Finance Institute, revised Jan 2006.
    13. Eric Benhamou, 2002. "Option pricing with Levy Process," Finance 0212006, EconWPA.
    14. L. Rogers & M. Tehranchi, 2010. "Can the implied volatility surface move by parallel shifts?," Finance and Stochastics, Springer, vol. 14(2), pages 235-248, April.
    15. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandar Mijatovi'c & Peter Tankov, 2012. "A new look at short-term implied volatility in asset price models with jumps," Papers 1207.0843, arXiv.org, revised Jul 2012.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.6787. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.