IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0404103.html
   My bibliography  Save this paper

The American put and European options near expiry, under Levy processes

Author

Listed:
  • Sergei Levendorskii

Abstract

We derive explicit formulas for time decay, for the European call and put options at expiry, and use them to calculate analytical approximations to the price of the American put and early exercise boundary near expiry. We show that for many families of non-Gaussian processes used in empirical studies of financial markets, the early exercise boundary for the American put without dividends is separated from the strike price by a non-vanishing margin on the interval [0,T). As the riskless rate vanishes and the drift decreases accordingly so that the stock remains a martingale, the optimal exercise price goes to zero uniformly over the interval [0, T). The implications for parameters' fitting are discussed.

Suggested Citation

  • Sergei Levendorskii, 2004. "The American put and European options near expiry, under Levy processes," Papers cond-mat/0404103, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0404103
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0404103
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    3. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    4. Yacine Aït‐Sahalia, 2002. "Telling from Discrete Data Whether the Underlying Continuous‐Time Model Is a Diffusion," Journal of Finance, American Finance Association, vol. 57(5), pages 2075-2112, October.
    5. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
    6. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    7. Andrew Matacz, 2000. "Financial Modeling And Option Theory With The Truncated Levy Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 143-160.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    9. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    10. Andrew Matacz, 1997. "Financial modeling and option theory with the truncated Lévy process," Science & Finance (CFM) working paper archive 500035, Science & Finance, Capital Fund Management.
    11. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizondo Rocío & Padilla Pablo & Bladt Mogens, 2009. "An Alternative Formula to Price American Options," Working Papers 2009-06, Banco de México.
    2. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    3. Michael Roper, 2008. "Implied volatility explosions: European calls and implied volatilities close to expiry in exponential L\'evy models," Papers 0809.3305, arXiv.org, revised Sep 2008.
    4. Leif Andersen & Alexander Lipton, 2013. "Asymptotics For Exponential Lévy Processes And Their Volatility Smile: Survey And New Results," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-98.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ait-Sahalia, Yacine, 2004. "Disentangling diffusion from jumps," Journal of Financial Economics, Elsevier, vol. 74(3), pages 487-528, December.
    2. Jos'e E. Figueroa-L'opez & Ruoting Gong & Christian Houdr'e, 2011. "High-order short-time expansions for ATM option prices under the CGMY model," Papers 1112.3111, arXiv.org, revised Aug 2012.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    5. Jos'e E. Figueroa-L'opez & Ruoting Gong & Christian Houdr'e, 2012. "High-order short-time expansions for ATM option prices of exponential L\'evy models," Papers 1208.5520, arXiv.org, revised Apr 2014.
    6. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    7. Nan Chen & Yanchu Liu, 2014. "American Option Sensitivities Estimation via a Generalized Infinitesimal Perturbation Analysis Approach," Operations Research, INFORMS, vol. 62(3), pages 616-632, June.
    8. Sergei Levendorskii, 2002. "Pseudo-diffusions and Quadratic term structure models," Papers cond-mat/0212249, arXiv.org, revised Apr 2004.
    9. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, December.
    10. Adam Misiorek & Rafal Weron, 2010. "Heavy-tailed distributions in VaR calculations," HSC Research Reports HSC/10/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    11. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    12. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    13. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    14. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    15. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    16. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    17. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    18. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    19. Aleksandar Arandjelović & Thorsten Rheinländer & Pavel V. Shevchenko, 2025. "Importance sampling for option pricing with feedforward neural networks," Finance and Stochastics, Springer, vol. 29(1), pages 97-141, January.
    20. Minting Zhu & Mancang Wang & Jingyu Wu, 2024. "An Option Pricing Formula for Active Hedging Under Logarithmic Investment Strategy," Mathematics, MDPI, vol. 12(23), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0404103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.