IDEAS home Printed from
   My bibliography  Save this paper

Pseudo-diffusions and Quadratic term structure models


  • Sergei Levendorskii


The non-gaussianity of processes observed in financial markets and relatively good performance of gaussian models can be reconciled by replacing the Brownian motion with Levy processes whose Levy densities decay as exp(-lambda|x|) or faster, where lambda>0 is large. This leads to asymptotic pricing models. The leading term, P0, is the price in the Gaussian model with the same instantaneous drift and variance. The first correction term depends on the instantaneous moments of order up to three, that is, the skewness is taken into account, the next term depends on moments of order four (kurtosis) as well, etc. In empirical studies, the asymptotic formula can be applied without explicit specification of the underlying process: it suffices to assume that the instantaneous moments of order greater than two are small w.r.t. moments of order one and two, and use empirical data on moments of order up to three or four. As an application, the bond pricing problem in the non-Gaussian quadratic term structure model is solved. For pricing of options near expiry, a different set of asymptotic formulas is developed; they require more detailed specification of the process, especially of its jump part. The leading terms of these formulas depends on the jump part of the process only, so that they can be used in empirical studies to identify the jump characteristics of the process.

Suggested Citation

  • Sergei Levendorskii, 2002. "Pseudo-diffusions and Quadratic term structure models," Papers cond-mat/0212249,, revised Apr 2004.
  • Handle: RePEc:arx:papers:cond-mat/0212249

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53.
    2. Li Chen & H. Vincent Poor, 2002. "A General Characterization of Quadratic Term Structure Models," Finance 0211008, EconWPA.
    3. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    4. Ole Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2002. "Some recent developments in stochastic volatility modelling," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 11-23.
    5. George Chacko, 2002. "Pricing Interest Rate Derivatives: A General Approach," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 195-241, March.
    6. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    7. Ahn, Dong-Hyun & Dittmar, Robert F. & Gallant, A. Ronald & Gao, Bin, 2003. "Purebred or hybrid?: Reproducing the volatility in term structure dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 147-180.
    8. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0212249. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.