IDEAS home Printed from https://ideas.repec.org/p/sfi/sfiwpa/500035.html
   My bibliography  Save this paper

Financial modeling and option theory with the truncated Lévy process

Author

Listed:
  • Andrew Matacz

    (Science & Finance, Capital Fund Management)

Abstract

In recent studies the truncated Levy process (TLP) has been shown to be very promising for the modeling of financial dynamics. In contrast to the Levy process, the TLP has finite moments and can account for both the previously observed excess kurtosis at short timescales, along with the slow convergence to Gaussian at longer timescales. I further test the truncated Levy paradigm using high frequency data from the Australian All Ordinaries share market index. I then consider, for the early Levy dominated regime, the issue of option hedging for two different hedging strategies that are in some sense optimal. These are compared with the usual delta hedging approach and found to differ significantly. I also derive the natural generalization of the Black-Scholes option pricing formula when the underlying security is modeled by a geometric TLP. This generalization would not be possible without the truncation.

Suggested Citation

  • Andrew Matacz, 1997. "Financial modeling and option theory with the truncated Lévy process," Science & Finance (CFM) working paper archive 500035, Science & Finance, Capital Fund Management.
  • Handle: RePEc:sfi:sfiwpa:500035
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Akgiray, Vedat & Booth, G Geoffrey, 1988. "The Stable-Law Model of Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 51-57, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lehnert, Thorsten & Wolff, Christian C, 2001. "Modelling Scale-Consistent VaR with the Truncated Lévy Flight," CEPR Discussion Papers 2711, C.E.P.R. Discussion Papers.
    2. Skjeltorp, Johannes A, 2000. "Scaling in the Norwegian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 486-528.
    3. Adam Misiorek & Rafal Weron, 2010. "Heavy-tailed distributions in VaR calculations," HSC Research Reports HSC/10/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    4. Sergei Levendorskii, 2004. "The American put and European options near expiry, under Levy processes," Papers cond-mat/0404103, arXiv.org.
    5. Stanley, H.E & Amaral, L.A.N & Canning, D & Gopikrishnan, P & Lee, Y & Liu, Y, 1999. "Econophysics: Can physicists contribute to the science of economics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 156-169.
    6. Szymon Borak & Adam Misiorek & Rafał Weron, 2010. "Models for Heavy-tailed Asset Returns," SFB 649 Discussion Papers SFB649DP2010-049, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    8. Alvaro Cartea, 2005. "Dynamic Hedging of Financial Instruments When the Underlying Follows a Non-Gaussian Process," Birkbeck Working Papers in Economics and Finance 0508, Birkbeck, Department of Economics, Mathematics & Statistics.

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfi:sfiwpa:500035. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/scfinfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.