IDEAS home Printed from https://ideas.repec.org/p/zbw/cfswop/200624.html
   My bibliography  Save this paper

Portfolio optimization when risk factors are conditionally varying and heavy tailed

Author

Listed:
  • Doganoglu, Toker
  • Hartz, Christoph
  • Mittnik, Stefan

Abstract

Assumptions about the dynamic and distributional behavior of risk factors are crucial for the construction of optimal portfolios and for risk assessment. Although asset returns are generally characterized by conditionally varying volatilities and fat tails, the normal distribution with constant variance continues to be the standard framework in portfolio management. Here we propose a practical approach to portfolio selection. It takes both the conditionally varying volatility and the fat-tailedness of risk factors explicitly into account, while retaining analytical tractability and ease of implementation. An application to a portfolio of nine German DAX stocks illustrates that the model is strongly favored by the data and that it is practically implementable.

Suggested Citation

  • Doganoglu, Toker & Hartz, Christoph & Mittnik, Stefan, 2006. "Portfolio optimization when risk factors are conditionally varying and heavy tailed," CFS Working Paper Series 2006/24, Center for Financial Studies (CFS).
  • Handle: RePEc:zbw:cfswop:200624
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25490/1/527427403.PDF
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. McCulloch, J Huston, 1997. "Measuring Tail Thickness to Estimate the Stable Index Alpha: A Critique," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 74-81, January.
    2. Chamberlain, Gary, 1983. "A characterization of the distributions that imply mean--Variance utility functions," Journal of Economic Theory, Elsevier, vol. 29(1), pages 185-201, February.
    3. Bawa, Vijay S. & Lindenberg, Eric B., 1977. "Abstract: Capital Market Equilibrium in a Mean-Lower Partial Moment Framework," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 635-635, November.
    4. Robert Blattberg & Thomas Sargent, 2010. "Regression With Non-Gaussian Stable Disturbances: Some Sampling Results," World Scientific Book Chapters, in: Greg M Allenby (ed.),Perspectives On Promotion And Database Marketing The Collected Works of Robert C Blattberg, chapter 1, pages 7-16, World Scientific Publishing Co. Pte. Ltd..
    5. Fama, Eugene F, 1971. "Risk, Return, and Equilibrium," Journal of Political Economy, University of Chicago Press, vol. 79(1), pages 30-55, Jan.-Feb..
    6. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Eugene F. Fama, 1965. "Portfolio Analysis in a Stable Paretian Market," Management Science, INFORMS, vol. 11(3), pages 404-419, January.
    9. Bawa, Vijay S & Elton, Edwin J & Gruber, Martin J, 1979. "Simple Rules for Optimal Portfolio Selection in Stable Paretian Markets," Journal of Finance, American Finance Association, vol. 34(4), pages 1041-1047, September.
    10. Harlow, W. V. & Rao, Ramesh K. S., 1989. "Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(3), pages 285-311, September.
    11. Bawa, Vijay S. & Lindenberg, Eric B., 1977. "Capital market equilibrium in a mean-lower partial moment framework," Journal of Financial Economics, Elsevier, vol. 5(2), pages 189-200, November.
    12. Akgiray, Vedat & Booth, G Geoffrey, 1988. "The Stable-Law Model of Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 51-57, January.
    13. Brown, Stephen J, 1989. " The Number of Factors in Security Returns," Journal of Finance, American Finance Association, vol. 44(5), pages 1247-1262, December.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiemo Krink & Sandra Paterlini, 2008. "Differential Evolution for Multiobjective Portfolio Optimization," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0007, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    2. Georg Mainik & Georgi Mitov & Ludger Ruschendorf, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Papers 1505.04045, arXiv.org.
    3. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    4. K. Liagkouras & K. Metaxiotis, 2019. "Improving the performance of evolutionary algorithms: a new approach utilizing information from the evolutionary process and its application to the fuzzy portfolio optimization problem," Annals of Operations Research, Springer, vol. 272(1), pages 119-137, January.
    5. Margherita Giuzio & Sandra Paterlini, 2019. "Un-diversifying during crises: Is it a good idea?," Computational Management Science, Springer, vol. 16(3), pages 401-432, July.
    6. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    7. Matteo Bonato, 2012. "Modeling fat tails in stock returns: a multivariate stable-GARCH approach," Computational Statistics, Springer, vol. 27(3), pages 499-521, September.
    8. Thiemo Krink & Sandra Paterlini, 2008. "Differential Evolution for Multiobjective Portfolio Optimization," Center for Economic Research (RECent) 021, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    9. repec:gam:jecnmx:v:4:y:2016:i:2:p:25:d:69492 is not listed on IDEAS
    10. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    11. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.
    12. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-28, May.

    More about this item

    Keywords

    Multivariate Stable Distribution; Index Model; Portfolio Optimization; Value-at- Risk; Model Adequacy;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:200624. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - Leibniz Information Centre for Economics). General contact details of provider: http://edirc.repec.org/data/ifkcfde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.