IDEAS home Printed from
   My bibliography  Save this paper

Modelling Scale-Consistent VaR with the Truncated Lévy Flight


  • Lehnert, Thorsten
  • Wolff, Christian C


Returns in financial assets show consistent excess kurtosis, indicating the presence of large fluctuations not predicted by Gaussian models. Mandelbrot (1963) first proposed the idea that price changes distributed according to a Lévy stable law. The unique feature of Lévy-stable distributions in general is that they are stable under addition. However, these distributions have power law tails that decay too slowly from the point of view of financial modelling. In recent studies the truncated Lévy Flight has been shown to eliminate this problem and to be very promising for the modelling of financial dynamics. An exponential decay in the tails ensures that all moments are finite and the distribution is fat-tailed for short time scales and converges in a Gaussian process for increasing time scales, a feature observed in financial data. We propose a model with time varying scale parameter (GARCH process) with error terms that are truncated Lévy distributed. We determine the appropriate GARCH specification for each data set by conducting a specification test based on a generalization of the augmented GARCH process of Duan (1997). The Lévy flight includes a method for scaling up a single-day volatility to a multi-day volatility, precisely a ?-root-of-time rule, where ? is the characteristic parameter of the process. We use this rule to forecast future volatility and as a result estimate Value-at-Risk (VaR) several days ahead and compare it to the RiskMetricsTM (1996) approach, which is a special case of our method. We compare the models in in-sample- and out-of-sample analyses for a sample of stock index returns.

Suggested Citation

  • Lehnert, Thorsten & Wolff, Christian C, 2001. "Modelling Scale-Consistent VaR with the Truncated Lévy Flight," CEPR Discussion Papers 2711, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:2711

    Download full text from publisher

    File URL:
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    2. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    3. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    4. Andrew Matacz, 1997. "Financial modeling and option theory with the truncated Lévy process," Science & Finance (CFM) working paper archive 500035, Science & Finance, Capital Fund Management.
    5. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    6. Pownall, Rachel A. J. & Koedijk, Kees G., 1999. "Capturing downside risk in financial markets: the case of the Asian Crisis," Journal of International Money and Finance, Elsevier, vol. 18(6), pages 853-870, December.
    7. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    8. Phillipe Lambert & J. K. Lindsey, 1999. "Analysing Financial Returns by Using Regression Models Based on Non-Symmetric Stable Distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 409-424.
    9. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    10. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Papers cond-mat/9705087,
    11. Liu, Shi-Miin & Brorsen, B Wade, 1995. "Maximum Likelihood Estimation of a Garch-Stable Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(3), pages 273-285, July-Sept.
    12. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    13. Ghose, Devajyoti & Kroner, Kenneth F., 1995. "The relationship between GARCH and symmetric stable processes: Finding the source of fat tails in financial data," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 225-251, September.
    14. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    15. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    16. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    17. Kaiser, Thomas, 1996. "One-factor-Garch models for German stocks: Estimation and forecasting," Tübinger Diskussionsbeiträge 87, University of Tübingen, School of Business and Economics.
    18. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    19. Thomas Kaiser, 1996. "One-Factor-GARCH Models for German Stocks - Estimation and Forecasting -," Econometrics 9612007, EconWPA.
    20. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    21. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    22. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
    23. Francis X. Diebold & Andrew Hickman & Atsushi Inoue & Til Schuermann, 1997. "Converting 1-Day Volatility to h-Day Volatitlity: Scaling by Root-h is Worse Than You Think," Center for Financial Institutions Working Papers 97-34, Wharton School Center for Financial Institutions, University of Pennsylvania.
    24. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Augmented GARCH Process; In- And Out-Of-Sample Analysis; Scale Consistency; Truncated Lévy Flight; Value-At-Risk;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:2711. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.