IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1002.1995.html
   My bibliography  Save this paper

Using pseudo-parabolic and fractional equations for option pricing in jump diffusion models

Author

Listed:
  • Andrey Itkin
  • Peter Carr

Abstract

In mathematical finance a popular approach for pricing options under some Levy model is to consider underlying that follows a Poisson jump diffusion process. As it is well known this results in a partial integro-differential equation (PIDE) that usually does not allow an analytical solution while numerical solution brings some problems. In this paper we elaborate a new approach on how to transform the PIDE to some class of so-called pseudo-parabolic equations which are known in mathematics but are relatively new for mathematical finance. As an example we discuss several jump-diffusion models which Levy measure allows such a transformation.

Suggested Citation

  • Andrey Itkin & Peter Carr, 2010. "Using pseudo-parabolic and fractional equations for option pricing in jump diffusion models," Papers 1002.1995, arXiv.org.
  • Handle: RePEc:arx:papers:1002.1995
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1002.1995
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Svetlana I Boyarchenko & Sergei Z Levendorskii, 2002. "Non-Gaussian Merton-Black-Scholes Theory," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4955, March.
    2. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    3. Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007. "Fractional diffusion models of option prices in markets with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
    4. Peter Carr & Anita Mayo, 2007. "On the Numerical Evaluation of Option Prices in Jump Diffusion Processes," The European Journal of Finance, Taylor & Francis Journals, vol. 13(4), pages 353-372.
    5. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    6. Amin, Kaushik I, 1993. " Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-1863, December.
    7. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    8. Peter Carr & Hélyette Geman & Dilip Madan & Marc Yor, 2005. "Pricing options on realized variance," Finance and Stochastics, Springer, vol. 9(4), pages 453-475, October.
    9. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I. Halperin & A. Itkin, 2012. "Pricing Illiquid Options with $N+1$ Liquid Proxies Using Mixed Dynamic-Static Hedging," Papers 1209.3503, arXiv.org.
    2. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    3. Andrey Itkin, 2014. "Splitting and Matrix Exponential approach for jump-diffusion models with Inverse Normal Gaussian, Hyperbolic and Meixner jumps," Papers 1405.6111, arXiv.org, revised May 2014.
    4. Andrey Itkin & Alexander Lipton, 2014. "Efficient solution of structural default models with correlated jumps and mutual obligations," Papers 1408.6513, arXiv.org, revised Nov 2014.
    5. Andrey Itkin, 2017. "Modeling stochastic skew of FX options using SLV models with stochastic spot/vol correlation and correlated jumps," Papers 1701.02821, arXiv.org, revised Jan 2017.
    6. Peter Carr & Roger Lee & Matthew Lorig, 2017. "Pricing Variance Swaps on Time-Changed Markov Processes," Papers 1705.01069, arXiv.org.
    7. repec:wsi:ijtafx:v:18:y:2015:i:05:n:s0219024915500314 is not listed on IDEAS
    8. Maximilian Ga{ss} & Kathrin Glau, 2016. "A Flexible Galerkin Scheme for Option Pricing in L\'evy Models," Papers 1603.08216, arXiv.org.
    9. Andrey Itkin, 2015. "HIGH ORDER SPLITTING METHODS FOR FORWARD PDEs AND PIDEs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-24.

    More about this item

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1002.1995. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.