IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.16617.html
   My bibliography  Save this paper

Pricing Multi-strike Quanto Call Options on Multiple Assets with Stochastic Volatility, Correlation, and Exchange Rates

Author

Listed:
  • Boris Ter-Avanesov
  • Gunter A. Meissner

Abstract

Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.

Suggested Citation

  • Boris Ter-Avanesov & Gunter A. Meissner, 2024. "Pricing Multi-strike Quanto Call Options on Multiple Assets with Stochastic Volatility, Correlation, and Exchange Rates," Papers 2411.16617, arXiv.org.
  • Handle: RePEc:arx:papers:2411.16617
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.16617
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abi Jaber, Eduardo & El Euch, Omar, 2019. "Markovian structure of the Volterra Heston model," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 63-72.
    2. Zárate-Miñano, Rafael & Anghel, Marian & Milano, Federico, 2013. "Continuous wind speed models based on stochastic differential equations," Applied Energy, Elsevier, vol. 104(C), pages 42-49.
    3. Kim, Hyun-Gyoon & Kim, See-Woo & Kim, Jeong-Hoon, 2024. "Variance and volatility swaps and options under the exponential fractional Ornstein–Uhlenbeck model," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    4. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    5. Elisa Al`os & David Garc'ia-Lorite & Aitor Muguruza, 2018. "On smile properties of volatility derivatives and exotic products: understanding the VIX skew," Papers 1808.03610, arXiv.org.
    6. Ahdida, Abdelkoddousse & Alfonsi, Aurélien, 2013. "A mean-reverting SDE on correlation matrices," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1472-1520.
    7. Rama Cont & Purba Das, 2022. "Rough volatility: fact or artefact?," Papers 2203.13820, arXiv.org, revised Jul 2023.
    8. Tsung-Yu Hsieh & Chi-Hsun Chou & Son-Nan Chen, 2015. "Quanto Interest-Rate Exchange Options in a Cross-Currency Libor Market Model," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 5(5), pages 816-830, May.
    9. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    10. Tsung-Yu Hsieh & Chi-Hsun Chou & Son-Nan Chen, 2015. "Quanto Interest-Rate Exchange Options in a Cross-Currency Libor Market Model," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 5(5), pages 816-830.
    11. Lisha Lin & Yaqiong Li & Rui Gao & Jianhong Wu, 2019. "The Numerical Simulation of Quanto Option Prices Using Bayesian Statistical Methods," Papers 1910.04075, arXiv.org.
    12. Carsten H. Chong & Viktor Todorov, 2024. "A nonparametric test for rough volatility," Papers 2407.10659, arXiv.org.
    13. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    14. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    15. Andrea Buraschi & Paolo Porchia & Fabio Trojani, 2010. "Correlation Risk and Optimal Portfolio Choice," Journal of Finance, American Finance Association, vol. 65(1), pages 393-420, February.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    17. Eduardo Abi Jaber & Omar El Euch, 2019. "Markovian structure of the Volterra Heston model," Post-Print hal-01716696, HAL.
    18. Branger, Nicole & Muck, Matthias, 2012. "Keep on smiling? The pricing of Quanto options when all covariances are stochastic," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1577-1591.
    19. Boyle, Phelim P & Evnine, Jeremy & Gibbs, Stephen, 1989. "Numerical Evaluation of Multivariate Contingent Claims," The Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 241-250.
    20. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    21. Jorion, Philippe & Sweeney, Richard J., 1996. "Mean reversion in real exchange rates: evidence and implications for forecasting," Journal of International Money and Finance, Elsevier, vol. 15(4), pages 535-550, August.
    22. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 589-607, December.
    23. Mishari Al-Foraih & Jan Posp'iv{s}il & Josep Vives, 2023. "Computation of Greeks under rough Volterra stochastic volatility models using the Malliavin calculus approach," Papers 2312.00405, arXiv.org.
    24. Abdelkoddousse Ahdida & Aurélien Alfonsi, 2013. "A Mean-Reverting SDE on Correlation matrices," Post-Print hal-00617111, HAL.
    25. Josselin Garnier & Knut Solna, 2015. "Correction to Black-Scholes formula due to fractional stochastic volatility," Papers 1509.01175, arXiv.org, revised Mar 2017.
    26. F. Comte & L. Coutin & E. Renault, 2012. "Affine fractional stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 337-378, May.
    27. Vagnani, Gianluca, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 72(1), pages 103-118, October.
    28. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    29. Ashish Dhiman & Yibei Hu, 2023. "Physics Informed Neural Network for Option Pricing," Papers 2312.06711, arXiv.org.
    30. Tristan Guillaume, 2016. "An Analytically Tractable Model for Pricing Multiasset Options with Correlated Jump-Diffusion Equity Processes and a Two-Factor Stochastic Yield Curve," Journal of Applied Mathematics, Hindawi, vol. 2016, pages 1-14, October.
    31. Jun Ma, 2009. "Pricing Foreign Equity Options with Stochastic Correlation and Volatility," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 303-327, November.
    32. Marcato, Gianluca & Sebehela, Tumellano & Campani, Carlos Heitor, 2018. "Volatility smiles when information is lagged in prices," The North American Journal of Economics and Finance, Elsevier, vol. 46(C), pages 151-165.
    33. Peter G Zhang, 1998. "Exotic Options:A Guide to Second Generation Options," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 3800, August.
    34. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    35. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    36. Gianluca Vagnani, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Post-Print hal-00736952, HAL.
    37. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    38. Ulrich Horst & Wei Xu & Rouyi Zhang, 2023. "Convergence of Heavy-Tailed Hawkes Processes and the Microstructure of Rough Volatility," Papers 2312.08784, arXiv.org, revised Nov 2024.
    39. Long Teng & Matthias Ehrhardt & Michael Günther, 2018. "Quanto Pricing In Stochastic Correlation Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-20, August.
    40. Bardina, X. & Nourdin, I. & Rovira, C. & Tindel, S., 2010. "Weak approximation of a fractional SDE," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 39-65, January.
    41. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    5. Marcos Escobar & Peter Hieber & Matthias Scherer, 2014. "Efficiently pricing double barrier derivatives in stochastic volatility models," Review of Derivatives Research, Springer, vol. 17(2), pages 191-216, July.
    6. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, June.
    7. Branger, Nicole & Herold, Michael & Muck, Matthias, 2021. "International stochastic discount factors and covariance risk," Journal of Banking & Finance, Elsevier, vol. 123(C).
    8. Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533, arXiv.org, revised Jun 2020.
    9. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    10. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    11. Tianyao Chen & Xue Cheng & Jingping Yang, 2019. "Common Decomposition of Correlated Brownian Motions and its Financial Applications," Papers 1907.03295, arXiv.org, revised Nov 2020.
    12. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    13. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    14. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    15. Vogel, Harold L. & Werner, Richard A., 2015. "An analytical review of volatility metrics for bubbles and crashes," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 15-28.
    16. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    17. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    18. Christian Gourieroux & Razvan Sufana, 2004. "Derivative Pricing with Multivariate Stochastic Volatility : Application to Credit Risk," Working Papers 2004-31, Center for Research in Economics and Statistics.
    19. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    20. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.16617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.