IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Valuation of Volatility Options

  • Jérôme B. Detemple
  • Carlton Osakwe
Registered author(s):

    This paper examines the valuation of European- and American-style volatility options based on a general equilibrium stochastic volatility framework. Properties of the optimal exercise region and of the option price are provided when volatility follows a general diffusion process. Explicit valuation formulas are derived in four particular cases. Emphasis is placed on the MRLP (mean-reverting in the log) volatility model which has received considerable empirical support. In this context we examine the properties and hedging behavior of volatility options. Unlike American options, European call options on volatility are found to display concavity at high levels of volatility. Cet article examine l'évaluation des options sur volatilité, de type européen ou américain, dans le cadre d'un modèle d'équilibre général avec volatilité stochastique. Certaines propriétés de la région d'exercise optimal et du prix de l'option sont établies lorsque la volatilité suit un processus général de diffusion. Des formules d'évaluation explicites sont ensuite dérivées dans quatre cas particuliers. Nous étudions en détail le cas d'un processus de volatilité de type MRLP (mean-reverting in the log) qui semble être conforme à l'évidence empirique. Les propriétés et le comportement de couverture des options sur volatilité sont examinées dans ce cadre. ¸ l'opposeé d'une option d'achat américaine, le prix d'une option d'achat européenne sur volatilité s'avère être une fonction concave lorsque le niveau de volatilité s'élève.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.cirano.qc.ca/files/publications/99s-43.pdf
    Download Restriction: no

    Paper provided by CIRANO in its series CIRANO Working Papers with number 99s-43.

    as
    in new window

    Length: 35 pages
    Date of creation: 01 Nov 1999
    Date of revision:
    Handle: RePEc:cir:cirwor:99s-43
    Contact details of provider: Postal: 2020 rue University, 25e étage, Montréal, Quéc, H3A 2A5
    Phone: (514) 985-4000
    Fax: (514) 985-4039
    Web page: http://www.cirano.qc.ca/Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
    2. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
    3. Yaacov Z. Bergman & Bruce D. Grundy & Zvi Wiener, . "General Properties of Option Prices (Revision of 11-95) (Reprint 058)," Rodney L. White Center for Financial Research Working Papers 01-96, Wharton School Rodney L. White Center for Financial Research.
    4. Yacine Ait-Sahalia & Andrew W. Lo, 1995. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," NBER Working Papers 5351, National Bureau of Economic Research, Inc.
    5. Jagannathan, Ravi, 1984. "Call options and the risk of underlying securities," Journal of Financial Economics, Elsevier, vol. 13(3), pages 425-434, September.
    6. Peter Carr & Robert Jarrow & Ravi Myneni, 1992. "Alternative Characterizations Of American Put Options," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 87-106.
    7. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    8. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
    10. Kim, In Joon, 1990. "The Analytic Valuation of American Options," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-72.
    11. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14.
    12. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    13. Robert C. Merton, 1973. "Theory of Rational Option Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 141-183, Spring.
    14. Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-46.
    15. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    16. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    17. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(02), pages 143-151, June.
    18. Bergman, Yaacov Z & Grundy, Bruce D & Wiener, Zvi, 1996. " General Properties of Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1573-1610, December.
    19. Cox, John C & Ross, Stephen A, 1976. "A Survey of Some New Results in Financial Option Pricing Theory," Journal of Finance, American Finance Association, vol. 31(2), pages 383-402, May.
    20. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    21. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-50.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:99s-43. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.