IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.06711.html

Physics Informed Neural Network for Option Pricing

Author

Listed:
  • Ashish Dhiman
  • Yibei Hu

Abstract

We apply a physics-informed deep-learning approach the PINN approach to the Black-Scholes equation for pricing American and European options. We test our approach on both simulated as well as real market data, compare it to analytical/numerical benchmarks. Our model is able to accurately capture the price behaviour on simulation data, while also exhibiting reasonable performance for market data. We also experiment with the architecture and learning process of our PINN model to provide more understanding of convergence and stability issues that impact performance.

Suggested Citation

  • Ashish Dhiman & Yibei Hu, 2023. "Physics Informed Neural Network for Option Pricing," Papers 2312.06711, arXiv.org.
  • Handle: RePEc:arx:papers:2312.06711
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.06711
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Damien Lamberton, 2018. "On the binomial approximation of the American put," Papers 1802.05614, arXiv.org, revised Dec 2018.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    3. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxuan Zhang & Yixiao Guo & Benzhuo Lu, 2025. "Exact Terminal Condition Neural Network for American Option Pricing Based on the Black-Scholes-Merton Equations," Papers 2510.27132, arXiv.org.
    2. Sina Kazemian & Ghazal Farhani & Amirhessam Yazdi, 2025. "An uncertainty-aware physics-informed neural network solution for the Black-Scholes equation: a novel framework for option pricing," Papers 2511.05519, arXiv.org.
    3. Boris Ter-Avanesov & Gunter A. Meissner, 2024. "Pricing Multi-strike Quanto Call Options on Multiple Assets with Stochastic Volatility, Correlation, and Exchange Rates," Papers 2411.16617, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Tao & Zhou, Han & Li, Ming-Gen & Yan, Shiwei, 2025. "A neural network method for the escape rate in metastable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 674(C).
    2. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    3. Jasper Rou, 2025. "Error Analysis of Deep PDE Solvers for Option Pricing," Papers 2505.05121, arXiv.org.
    4. Aghapour, Ahmad & Arian, Hamid & Seco, Luis, 2025. "Deep-time neural networks: An efficient approach for solving high-dimensional PDEs," Applied Mathematics and Computation, Elsevier, vol. 488(C).
    5. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org, revised Feb 2026.
    6. Hyeong-Ohk Bae & Seunggu Kang & Muhyun Lee, 2024. "Option Pricing and Local Volatility Surface by Physics-Informed Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 3143-3159, November.
    7. Jasper Rou, 2025. "Time Deep Gradient Flow Method for pricing American options," Papers 2507.17606, arXiv.org.
    8. Antonis Papapantoleon & Jasper Rou, 2024. "A time-stepping deep gradient flow method for option pricing in (rough) diffusion models," Papers 2403.00746, arXiv.org, revised Apr 2025.
    9. Serena Della Corte & Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org, revised Jan 2026.
    10. Wenxuan Zhang & Yixiao Guo & Benzhuo Lu, 2025. "Exact Terminal Condition Neural Network for American Option Pricing Based on the Black-Scholes-Merton Equations," Papers 2510.27132, arXiv.org.
    11. Edson Pindza & Jules Clement & Sutene Mwambi & Nneka Umeorah, 2025. "Neural Network for Valuing Bitcoin Options Under Jump-Diffusion and Market Sentiment Model," Computational Economics, Springer;Society for Computational Economics, vol. 66(3), pages 2305-2342, September.
    12. Xiang Wang & Jessica Li & Jichun Li, 2023. "A Deep Learning Based Numerical PDE Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 149-164, June.
    13. Weilong Fu & Ali Hirsa, 2022. "Solving barrier options under stochastic volatility using deep learning," Papers 2207.00524, arXiv.org.
    14. Ali Al-Aradi & Adolfo Correia & Danilo Naiff & Gabriel Jardim & Yuri Saporito, 2018. "Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning," Papers 1811.08782, arXiv.org.
    15. Carl Remlinger & Joseph Mikael & Romuald Elie, 2022. "Robust Operator Learning to Solve PDE," Working Papers hal-03599726, HAL.
    16. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    17. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    18. Domagoj Demeterfi & Kathrin Glau & Linus Wunderlich, 2025. "Function approximations for counterparty credit exposure calculations," Papers 2507.09004, arXiv.org.
    19. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    20. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.06711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.