IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v7y2007i5p563-573.html
   My bibliography  Save this article

On option pricing models in the presence of heavy tails

Author

Listed:
  • Michel Vellekoop
  • Hans Nieuwenhuis

Abstract

We propose a modification of the option pricing framework derived by Borland which removes the possibilities for arbitrage within this framework. It turns out that such arbitrage possibilities arise due to an incorrect derivation of the martingale transformation in the non-Gaussian option models which are used in that paper. We show how a similar model can be built for the asset price processes which excludes arbitrage. However, the correction causes the pricing formulas to be less explicit than the ones in the original formulation, since the stock price itself is no longer a Markov process. Practical option pricing algorithms will therefore have to resort to Monte Carlo methods or partial differential equations and we show how these can be implemented. An extra parameter, which needs to be specified before the model can be used, will give market makers some extra freedom when fitting their model to market data.

Suggested Citation

  • Michel Vellekoop & Hans Nieuwenhuis, 2007. "On option pricing models in the presence of heavy tails," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 563-573.
  • Handle: RePEc:taf:quantf:v:7:y:2007:i:5:p:563-573
    DOI: 10.1080/14697680601077967
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680601077967
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680601077967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    2. Lisa Borland & Jean-Philippe Bouchaud, 2004. "A non-Gaussian option pricing model with skew," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 499-514.
    3. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    6. L. Borland & J. P. Bouchaud, 2004. "A Non-Gaussian Option Pricing Model with Skew," Papers cond-mat/0403022, arXiv.org, revised Mar 2004.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
    2. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Allan Jonathan da Silva & Jack Baczynski & Leonardo Fagundes de Mello, 2023. "Hedging Interest Rate Options with Reinforcement Learning: an investigation of a heavy-tailed distribution," Business and Management Studies, Redfame publishing, vol. 9(2), pages 1-14, December.
    4. Borland, Lisa, 2016. "Exploring the dynamics of financial markets: from stock prices to strategy returns," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 59-74.
    5. Ahmad Hajihasani & Ali Namaki & Nazanin Asadi & Reza Tehrani, 2020. "Non-Extensive Value-at-Risk Estimation During Times of Crisis," Papers 2005.09036, arXiv.org, revised Jan 2021.
    6. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
    8. Moretto, Enrico & Pasquali, Sara & Trivellato, Barbara, 2016. "Option pricing under deformed Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 246-263.
    9. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    10. Namaki, A. & Koohi Lai, Z. & Jafari, G.R. & Raei, R. & Tehrani, R., 2013. "Comparing emerging and mature markets during times of crises: A non-extensive statistical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3039-3044.
    11. Sosa-Correa, William O. & Ramos, Antônio M.T. & Vasconcelos, Giovani L., 2018. "Investigation of non-Gaussian effects in the Brazilian option market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 525-539.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Forecasting of Options Prices: A Natural Framework for Pooling Historical and Implied Volatiltiy Information," Cambridge Working Papers in Economics 0116, Faculty of Economics, University of Cambridge.
    2. Sosa-Correa, William O. & Ramos, Antônio M.T. & Vasconcelos, Giovani L., 2018. "Investigation of non-Gaussian effects in the Brazilian option market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 525-539.
    3. Peter A. Abken & Saikat Nandi, 1996. "Options and volatility," Economic Review, Federal Reserve Bank of Atlanta, vol. 81(Dec), pages 21-35.
    4. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    5. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660.
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    9. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    10. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    11. Christian Gourieroux & Razvan Sufana, 2004. "Derivative Pricing with Multivariate Stochastic Volatility : Application to Credit Risk," Working Papers 2004-31, Center for Research in Economics and Statistics.
    12. David Heath & Simon Hurst & Eckhard Platen, 1999. "Modelling the Stochastic Dynamics of Volatility for Equity Indices," Research Paper Series 7, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    14. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    15. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
    16. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    17. Carey, Alexander, 2008. "Natural volatility and option pricing," MPRA Paper 6709, University Library of Munich, Germany.
    18. Rodrigue Oeuvray & Pascal Junod, 2013. "On time scaling of semivariance in a jump-diffusion process," Papers 1311.1122, arXiv.org.
    19. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175.
    20. Borland, Lisa, 2016. "Exploring the dynamics of financial markets: from stock prices to strategy returns," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 59-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:7:y:2007:i:5:p:563-573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.