IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1910.13338.html
   My bibliography  Save this paper

From microscopic price dynamics to multidimensional rough volatility models

Author

Listed:
  • Mehdi Tomas
  • Mathieu Rosenbaum

Abstract

Rough volatility is a well-established statistical stylised fact of financial assets. This property has lead to the design and analysis of various new rough stochastic volatility models. However, most of these developments have been carried out in the mono-asset case. In this work, we show that some specific multivariate rough volatility models arise naturally from microstructural properties of the joint dynamics of asset prices. To do so, we use Hawkes processes to build microscopic models that reproduce accurately high frequency cross-asset interactions and investigate their long term scaling limits. We emphasize the relevance of our approach by providing insights on the role of microscopic features such as momentum and mean-reversion on the multidimensional price formation process. We in particular recover classical properties of high-dimensional stock correlation matrices.

Suggested Citation

  • Mehdi Tomas & Mathieu Rosenbaum, 2019. "From microscopic price dynamics to multidimensional rough volatility models," Papers 1910.13338, arXiv.org, revised Oct 2019.
  • Handle: RePEc:arx:papers:1910.13338
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1910.13338
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José Da Fonseca & Wenjun Zhang, 2019. "Volatility of volatility is (also) rough," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(5), pages 600-611, May.
    2. Stephen J. Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," Papers 1302.1405, arXiv.org, revised Jun 2013.
    3. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    4. Stephen Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-9, October.
    5. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    6. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra-type processes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 407-448, December.
    7. Thibault Jaisson & Mathieu Rosenbaum, 2013. "Limit theorems for nearly unstable Hawkes processes," Papers 1310.2033, arXiv.org, revised Mar 2015.
    8. Paul Jusselin & Mathieu Rosenbaum, 2018. "No-arbitrage implies power-law market impact and rough volatility," Papers 1805.07134, arXiv.org.
    9. Reigneron, Pierre-Alain & Allez, Romain & Bouchaud, Jean-Philippe, 2011. "Principal regression analysis and the index leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(17), pages 3026-3035.
    10. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    11. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    12. Pierre-Alain Reigneron & Romain Allez & Jean-Philippe Bouchaud, 2010. "Principal Regression Analysis and the index leverage effect," Papers 1011.5810, arXiv.org, revised Feb 2011.
    13. Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2018. "Rough volatility: Evidence from option prices," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 767-776, September.
    14. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra type processes," Papers 1907.01917, arXiv.org, revised Sep 2019.
    15. repec:dau:papers:123456789/10911 is not listed on IDEAS
    16. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    17. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    18. Omar El Euch & Jim Gatheral & Radov{s} Radoiv{c}i'c & Mathieu Rosenbaum, 2018. "The Zumbach effect under rough Heston," Papers 1809.02098, arXiv.org.
    19. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2019. "Deep Learning Volatility," Papers 1901.09647, arXiv.org, revised Aug 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Abi Jaber & Enzo Miller & Huy^en Pham, 2020. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Papers 2006.13539, arXiv.org, revised Jan 2021.
    2. Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2021. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Post-Print hal-02877569, HAL.
    3. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    4. Mathieu Rosenbaum & Mehdi Tomas, 2021. "A characterisation of cross-impact kernels," Papers 2107.08684, arXiv.org.
    5. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2020. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Working Papers hal-02567489, HAL.
    6. Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2020. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Working Papers hal-02877569, HAL.
    7. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2022. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Post-Print hal-02567489, HAL.
    8. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2020. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Papers 2004.01624, arXiv.org, revised Mar 2022.
    9. Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2021. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02877569, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    2. Paul Jusselin & Mathieu Rosenbaum, 2020. "No‐arbitrage implies power‐law market impact and rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1309-1336, October.
    3. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    4. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Papers 2005.05730, arXiv.org.
    5. Fabio Baschetti & Giacomo Bormetti & Silvia Romagnoli & Pietro Rossi, 2020. "The SINC way: A fast and accurate approach to Fourier pricing," Papers 2009.00557, arXiv.org, revised May 2021.
    6. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Working Papers hal-02998555, HAL.
    7. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    8. Aur'elien Alfonsi, 2023. "Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation," Papers 2302.07758, arXiv.org, revised Oct 2024.
    9. Jean-Philippe Bouchaud, 2021. "Radical Complexity," Papers 2103.09692, arXiv.org.
    10. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2021. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Post-Print hal-02998555, HAL.
    11. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    12. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    13. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    14. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    15. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    16. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    17. Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.
    18. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    19. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    20. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.13338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.