IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1505.00704.html
   My bibliography  Save this paper

Collective synchronization and high frequency systemic instabilities in financial markets

Author

Listed:
  • Lucio Maria Calcagnile
  • Giacomo Bormetti
  • Michele Treccani
  • Stefano Marmi
  • Fabrizio Lillo

Abstract

Recent years have seen an unprecedented rise of the role that technology plays in all aspects of human activities. Unavoidably, technology has heavily entered the Capital Markets trading space, to the extent that all major exchanges are now trading exclusively using electronic platforms. The ultra fast speed of information processing, order placement, and cancelling generates new dynamics which is still not completely deciphered. Analyzing a large dataset of stocks traded on the US markets, our study evidences that since 2001 the level of synchronization of large price movements across assets has significantly increased. Even though the total number of over-threshold events has diminished in recent years, when an event occurs, the average number of assets swinging together has increased. Quite unexpectedly, only a minor fraction of these events -- regularly less than 40% along all years -- can be connected with the release of pre-announced macroeconomic news. We also document that the larger is the level of sistemicity of an event, the larger is the probability -- and degree of sistemicity -- that a new event will occur in the near future. This opens the way to the intriguing idea that systemic events emerge as an effect of a purely endogenous mechanism. Consistently, we present a high-dimensional, yet parsimonious, model based on a class of self- and cross-exciting processes, termed Hawkes processes, which reconciles the modeling effort with the empirical evidence.

Suggested Citation

  • Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.
  • Handle: RePEc:arx:papers:1505.00704
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1505.00704
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana-Maria Dumitru & Giovanni Urga, 2011. "Identifying Jumps in Financial Assets: A Comparison Between Nonparametric Jump Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 242-255, October.
    2. Stephen J. Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," Papers 1302.1405, arXiv.org, revised Jun 2013.
    3. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    4. Anton Golub & John Keane & Ser-Huang Poon, 2012. "High Frequency Trading and Mini Flash Crashes," Papers 1211.6667, arXiv.org.
    5. Austin Gerig, 2012. "High-Frequency Trading Synchronizes Prices in Financial Markets," Papers 1211.1919, arXiv.org.
    6. Frédéric Abergel & Anirban Chakraborti & B.K. Chakrabarti & M. Mitra, 2011. "Econophysics of order-driven markets," Post-Print hal-00872396, HAL.
    7. Ioane Muni Toke & Fabrizio Pomponio, 2012. "Modelling Trades-Through in a Limit Order Book Using Hawkes Processes," Post-Print hal-00745554, HAL.
    8. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    9. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    10. Armand Joulin & Augustin Lefevre & Daniel Grunberg & Jean-Philippe Bouchaud, 2008. "Stock price jumps: news and volume play a minor role," Papers 0803.1769, arXiv.org.
    11. Marcello Rambaldi & Paris Pennesi & Fabrizio Lillo, 2014. "Modeling FX market activity around macroeconomic news: a Hawkes process approach," Papers 1405.6047, arXiv.org, revised Dec 2014.
    12. Bollerslev, Tim & Todorov, Viktor & Li, Sophia Zhengzi, 2013. "Jump tails, extreme dependencies, and the distribution of stock returns," Journal of Econometrics, Elsevier, vol. 172(2), pages 307-324.
    13. Alexander M. Petersen & Fengzhong Wang & Shlomo Havlin & H. Eugene Stanley, 2009. "Quantitative law describing market dynamics before and after interest-rate change," Papers 0903.0010, arXiv.org, revised Oct 2010.
    14. Vladimir Filimonov & Didier Sornette, 2012. "Quantifying reflexivity in financial markets: towards a prediction of flash crashes," Papers 1201.3572, arXiv.org, revised Apr 2012.
    15. Toke, Ioane Muni & Pomponio, Fabrizio, 2012. "Modelling trades-through in a limit order book using hawkes processes," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-23.
    16. Jeffrey MacIntosh, 2013. "High Frequency Traders: Angels or Devils?," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 391, October.
    17. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    18. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    19. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    20. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    21. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    22. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    23. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    24. Alexander M. Petersen & Fengzhong Wang & Shlomo Havlin & H. Eugene Stanley, 2010. "Market dynamics immediately before and after financial shocks: quantifying the Omori, productivity and Bath laws," Papers 1006.1882, arXiv.org, revised Oct 2010.
    25. repec:hal:journl:peer-00741630 is not listed on IDEAS
    26. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    27. Stephen Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-9, October.
    28. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2015. "Modelling systemic price cojumps with Hawkes factor models," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1137-1156, July.
    2. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2013. "Modelling systemic price cojumps with Hawkes factor models," Papers 1301.6141, arXiv.org, revised Mar 2013.
    3. Marcello Rambaldi & Vladimir Filimonov & Fabrizio Lillo, 2016. "Detection of intensity bursts using Hawkes processes: an application to high frequency financial data," Papers 1610.05383, arXiv.org.
    4. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    5. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    6. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    7. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    8. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Papers 2005.05730, arXiv.org.
    9. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    10. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2016. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Papers 1602.07663, arXiv.org.
    11. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    12. Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
    13. Hyun Jin Jang & Kiseop Lee & Kyungsub Lee, 2020. "Systemic risk in market microstructure of crude oil and gasoline futures prices: A Hawkes flocking model approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(2), pages 247-275, February.
    14. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Working Papers hal-02998555, HAL.
    15. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2021. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Post-Print hal-02998555, HAL.
    16. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    17. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    18. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org.
    19. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    20. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1505.00704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.