IDEAS home Printed from
   My bibliography  Save this paper

Modelling systemic price cojumps with Hawkes factor models


  • Giacomo Bormetti
  • Lucio Maria Calcagnile
  • Michele Treccani
  • Fulvio Corsi
  • Stefano Marmi
  • Fabrizio Lillo


Instabilities in the price dynamics of a large number of financial assets are a clear sign of systemic events. By investigating a set of 20 high cap stocks traded at the Italian Stock Exchange, we find that there is a large number of high frequency cojumps. We show that the dynamics of these jumps is described neither by a multivariate Poisson nor by a multivariate Hawkes model. We introduce a Hawkes one factor model which is able to capture simultaneously the time clustering of jumps and the high synchronization of jumps across assets.

Suggested Citation

  • Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2013. "Modelling systemic price cojumps with Hawkes factor models," Papers 1301.6141,, revised Mar 2013.
  • Handle: RePEc:arx:papers:1301.6141

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    2. Tim Bollerslev & Viktor Todorov, 2011. "Tails, Fears, and Risk Premia," Journal of Finance, American Finance Association, vol. 66(6), pages 2165-2211, December.
    3. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    4. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    5. Toke, Ioane Muni & Pomponio, Fabrizio, 2012. "Modelling trades-through in a limit order book using hawkes processes," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 6, pages 1-23.
    6. Dungey, Mardi & McKenzie, Michael & Smith, L. Vanessa, 2009. "Empirical evidence on jumps in the term structure of the US Treasury Market," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 430-445, June.
    7. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    8. John M. Maheu & Thomas H. McCurdy, 2004. "News Arrival, Jump Dynamics, and Volatility Components for Individual Stock Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 755-793, April.
    9. Dungey, Mardi & Hvozdyk, Lyudmyla, 2012. "Cojumping: Evidence from the US Treasury bond and futures markets," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1563-1575.
    10. Sanjiv Ranjan Das & Raman Uppal, 2004. "Systemic Risk and International Portfolio Choice," Journal of Finance, American Finance Association, vol. 59(6), pages 2809-2834, December.
    11. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    12. Jérôme Lahaye & Sébastien Laurent & Christopher J. Neely, 2011. "Jumps, cojumps and macro announcements," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 893-921, September.
    13. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    14. repec:hal:journl:peer-00741630 is not listed on IDEAS
    15. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    16. Frédéric Abergel & Anirban Chakraborti & B.K. Chakrabarti & M. Mitra, 2011. "Econophysics of order-driven markets," Post-Print hal-00872396, HAL.
    17. Ioane Muni Toke & Fabrizio Pomponio, 2012. "Modelling Trades-Through in a Limit Order Book Using Hawkes Processes," Post-Print hal-00745554, HAL.
    18. Armand Joulin & Augustin Lefevre & Daniel Grunberg & Jean-Philippe Bouchaud, 2008. "Stock price jumps: news and volume play a minor role," Papers 0803.1769,
    19. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Specification Testing in Hawkes Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 15(1), pages 139-171.
    2. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592,, revised May 2015.
    3. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    4. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948,, revised Dec 2015.
    5. Laurini, Márcio Poletti & Mauad, Roberto Baltieri, 2015. "A common jump factor stochastic volatility model," Finance Research Letters, Elsevier, vol. 12(C), pages 2-10.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.6141. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.