IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v40y2014icp443-459.html
   My bibliography  Save this article

Cojumps in stock prices: Empirical evidence

Author

Listed:
  • Gilder, Dudley
  • Shackleton, Mark B.
  • Taylor, Stephen J.

Abstract

We examine contemporaneous jumps (cojumps) among individual stocks and a proxy for the market portfolio. We show, through a Monte Carlo study, that using intraday jump tests and a coexceedance criterion to detect cojumps has a power similar to the cojump test proposed by Bollerslev et al. (2008). However, we also show that we should not expect to detect all common jumps comprising a cojump when using such coexceedance based detection methods. Empirically, we provide evidence of an association between jumps in the market portfolio and cojumps in the underlying stocks. Consistent with our Monte Carlo evidence, moderate numbers of stocks are often detected to be involved in these (systematic) cojumps. Importantly, the results suggest that market-level news is able to generate simultaneous large jumps in individual stocks. We also find evidence of an association between systematic cojumps and Federal Funds Target Rate announcements.

Suggested Citation

  • Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
  • Handle: RePEc:eee:jbfina:v:40:y:2014:i:c:p:443-459
    DOI: 10.1016/j.jbankfin.2013.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426613002082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2013.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana-Maria Dumitru & Giovanni Urga, 2011. "Identifying Jumps in Financial Assets: A Comparison Between Nonparametric Jump Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 242-255, October.
    2. repec:hal:journl:peer-00815564 is not listed on IDEAS
    3. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    4. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    5. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    6. Wood, Robert A & McInish, Thomas H & Ord, J Keith, 1985. "An Investigation of Transactions Data for NYSE Stocks," Journal of Finance, American Finance Association, vol. 40(3), pages 723-739, July.
    7. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
    8. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    9. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    10. repec:hal:journl:peer-00741630 is not listed on IDEAS
    11. Jérôme Lahaye & Sébastien Laurent & Christopher J. Neely, 2011. "Jumps, cojumps and macro announcements," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 893-921, September.
    12. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
    13. Evans, Kevin P., 2011. "Intraday jumps and US macroeconomic news announcements," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2511-2527, October.
    14. Dungey, Mardi & McKenzie, Michael & Smith, L. Vanessa, 2009. "Empirical evidence on jumps in the term structure of the US Treasury Market," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 430-445, June.
    15. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    16. Joel Hasbrouck, 1999. "The Dynamics of Discrete Bid and Ask Quotes," Journal of Finance, American Finance Association, vol. 54(6), pages 2109-2142, December.
    17. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
    18. Jiang, George J. & Lo, Ingrid & Verdelhan, Adrien, 2011. "Information Shocks, Liquidity Shocks, Jumps, and Price Discovery: Evidence from the U.S. Treasury Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(2), pages 527-551, April.
    19. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
    20. Dungey, Mardi & Hvozdyk, Lyudmyla, 2012. "Cojumping: Evidence from the US Treasury bond and futures markets," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1563-1575.
    21. Bollerslev, Tim & Todorov, Viktor & Li, Sophia Zhengzi, 2013. "Jump tails, extreme dependencies, and the distribution of stock returns," Journal of Econometrics, Elsevier, vol. 172(2), pages 307-324.
    22. Bollerslev, Tim & Law, Tzuo Hann & Tauchen, George, 2008. "Risk, jumps, and diversification," Journal of Econometrics, Elsevier, vol. 144(1), pages 234-256, May.
    23. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    24. Sanjiv Ranjan Das & Raman Uppal, 2004. "Systemic Risk and International Portfolio Choice," Journal of Finance, American Finance Association, vol. 59(6), pages 2809-2834, December.
    25. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    26. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    27. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
    28. Lee, Suzanne S. & Hannig, Jan, 2010. "Detecting jumps from Lévy jump diffusion processes," Journal of Financial Economics, Elsevier, vol. 96(2), pages 271-290, May.
    29. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    30. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    31. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    32. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    33. Suzanne S. Lee, 2012. "Jumps and Information Flow in Financial Markets," Review of Financial Studies, Society for Financial Studies, vol. 25(2), pages 439-479.
    34. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    35. Harris, Lawrence, 1986. "A transaction data study of weekly and intradaily patterns in stock returns," Journal of Financial Economics, Elsevier, vol. 16(1), pages 99-117, May.
    36. Boudt, Kris & Croux, Christophe & Laurent, Sébastien, 2011. "Robust estimation of intraweek periodicity in volatility and jump detection," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 353-367, March.
    37. M. Podolskij & D. Ziggel, 2010. "New tests for jumps in semimartingale models," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 15-41, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    2. Chan, Kam Fong & Powell, John G. & Treepongkaruna, Sirimon, 2014. "Currency jumps and crises: Do developed and emerging market currencies jump together?," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 132-157.
    3. Yao, Wenying & Tian, Jing, 2015. "The role of intra-day volatility pattern in jump detection: empirical evidence on how financial markets respond to macroeconomic news announcements," Working Papers 2015-05, University of Tasmania, Tasmanian School of Business and Economics.
    4. Serdengeçti, Süleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2021. "Dynamics of return and liquidity (co) jumps in emerging foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    5. Arouri, Mohamed & M’saddek, Oussama & Nguyen, Duc Khuong & Pukthuanthong, Kuntara, 2019. "Cojumps and asset allocation in international equity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 1-22.
    6. Wang, Hao & Yue, Mengqi & Zhao, Hua, 2015. "Cojumps in China's spot and stock index futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 541-557.
    7. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    8. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    9. Konstantinos Gkillas & Dimitrios Vortelinos & Christos Floros & Alexandros Garefalakis & Nikolaos Sariannidis, 2020. "Greek sovereign crisis and European exchange rates: effects of news releases and their providers," Annals of Operations Research, Springer, vol. 294(1), pages 515-536, November.
    10. Pierre Bajgrowicz & Olivier Scaillet & Adrien Treccani, 2016. "Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News," Management Science, INFORMS, vol. 62(8), pages 2198-2217, August.
    11. Piccotti, Louis R., 2018. "Jumps, cojumps, and efficiency in the spot foreign exchange market," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 49-67.
    12. Ao Kong & Hongliang Zhu & Robert Azencott, 2019. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Papers 1912.07165, arXiv.org.
    13. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    14. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    15. Jan Novotný & Giovanni Urga, 2018. "Testing for Co-jumps in Financial Markets," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 16(1), pages 118-128.
    16. Dumitru, Ana-Maria & Hizmeri, Rodrigo & Izzeldin, Marwan, 2019. "Forecasting the Realized Variance in the Presence of Intraday Periodicity," EconStor Preprints 193631, ZBW - Leibniz Information Centre for Economics.
    17. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    18. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    19. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    20. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.

    More about this item

    Keywords

    High-frequency stock prices; Non-parametric jump tests; Realised volatility; Macroeconomic news;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:40:y:2014:i:c:p:443-459. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.