IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.08623.html
   My bibliography  Save this paper

Rough Bergomi turns grey

Author

Listed:
  • Antoine Jacquier
  • Adriano Oliveri Orioles
  • Zan Zuric

Abstract

We propose a tractable extension of the rough Bergomi model, replacing the fractional Brownian motion with a generalised grey Brownian motion, which we show to be reminiscent of models with stochastic volatility of volatility. This extension breaks away from the log-Normal assumption of rough Bergomi, thereby making it a viable suggestion for the Equity Holy Grail -- the joint SPX/VIX options calibration. For this new (class of) model(s), we provide semi-closed and asymptotic formulae for SPX and VIX options and show numerically its potential advantages as well as calibration results.

Suggested Citation

  • Antoine Jacquier & Adriano Oliveri Orioles & Zan Zuric, 2025. "Rough Bergomi turns grey," Papers 2505.08623, arXiv.org.
  • Handle: RePEc:arx:papers:2505.08623
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.08623
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    2. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    3. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    4. Paul Gassiat, 2018. "On the martingale property in the rough Bergomi model," Papers 1811.10935, arXiv.org, revised Apr 2019.
    5. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Working Papers hal-02910724, HAL.
    6. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    7. Eduardo Abi Jaber & Christian Bayer & Simon Breneis, 2024. "State spaces of multifactor approximations of nonnegative Volterra processes," Papers 2412.17526, arXiv.org.
    8. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    9. Eduardo Abi Jaber & Omar El Euch, 2019. "Multi-factor approximation of rough volatility models," Post-Print hal-01697117, HAL.
    10. Fei Sun & Yijun Hu, 2018. "Quasiconvex risk measures with markets volatility," Papers 1806.08701, arXiv.org, revised Jun 2019.
    11. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    12. Christian Bayer & Simon Breneis, 2023. "Markovian approximations of stochastic Volterra equations with the fractional kernel," Quantitative Finance, Taylor & Francis Journals, vol. 23(1), pages 53-70, January.
    13. Huang, Darien & Schlag, Christian & Shaliastovich, Ivan & Thimme, Julian, 2019. "Volatility-of-Volatility Risk," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(6), pages 2423-2452, December.
    14. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    15. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Post-Print hal-04373380, HAL.
    16. Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
    17. Junjie Hu & Wolfgang Karl Hardle & Weiyu Kuo, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," Papers 1912.05228, arXiv.org, revised Dec 2021.
    18. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    19. Fei Sun & Yijun Hu, 2018. "Systemic risk measures with markets volatility," Papers 1812.06185, arXiv.org, revised Jun 2019.
    20. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    21. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    22. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    23. F. Comte, 1996. "Simulation And Estimation Of Long Memory Continuous Time Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(1), pages 19-36, January.
    24. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.
    25. Antoine Jacquier & Claude Martini & Aitor Muguruza, 2018. "On VIX futures in the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 45-61, January.
    26. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    27. Piryatinska, A. & Saichev, A.I. & Woyczynski, W.A., 2005. "Models of anomalous diffusion: the subdiffusive case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 375-420.
    28. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.
    29. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    30. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    31. Michael Donadelli & Marcus Jüppner & Antonio Paradiso & Christian Schlag, 2019. "Temperature Volatility Risk," Working Papers 2019:05, Department of Economics, University of Venice "Ca' Foscari".
    32. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2012. "Stochastic Volatility of Volatility and Variance Risk Premia," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 1-46, December.
    33. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org, revised Dec 2024.
    2. repec:hal:wpaper:hal-03902513 is not listed on IDEAS
    3. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03902513, HAL.
    4. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2024. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Post-Print hal-03902513, HAL.
    5. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    6. Eduardo Abi Jaber & Nathan De Carvalho, 2023. "Reconciling rough volatility with jumps," Papers 2303.07222, arXiv.org, revised Sep 2024.
    7. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Minimax Theory," Papers 2210.01214, arXiv.org, revised Feb 2024.
    8. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    9. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
    10. Julien Guyon, 2020. "Inversion of convex ordering in the VIX market," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1597-1623, October.
    11. Julien Guyon, 2024. "Dispersion-constrained martingale Schrödinger problems and the exact joint S&P 500/VIX smile calibration puzzle," Finance and Stochastics, Springer, vol. 28(1), pages 27-79, January.
    12. Alexandre Pannier, 2023. "Path-dependent PDEs for volatility derivatives," Papers 2311.08289, arXiv.org, revised Jan 2024.
    13. Ofelia Bonesini & Emilio Ferrucci & Ioannis Gasteratos & Antoine Jacquier, 2024. "Rough differential equations for volatility," Papers 2412.21192, arXiv.org.
    14. Horvath, Blanka & Jacquier, Antoine & Muguruza, Aitor & Søjmark, Andreas, 2024. "Functional central limit theorems for rough volatility," LSE Research Online Documents on Economics 122848, London School of Economics and Political Science, LSE Library.
    15. Eduardo Abi Jaber & Eyal Neuman, 2025. "Optimal Liquidation with Signals: the General Propagator Case," Post-Print hal-03835948, HAL.
    16. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    17. Kostopoulos, Dimitrios & Meyer, Steffen & Uhr, Charline, 2022. "Ambiguity about volatility and investor behavior," Journal of Financial Economics, Elsevier, vol. 145(1), pages 277-296.
    18. Jonathan Haynes & Daniel Schmitt & Lukas Grimm, 2019. "Estimating stochastic volatility: the rough side to equity returns," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 449-469, December.
    19. Sebastian A. Gehricke & Jin E. Zhang, 2020. "Modeling VXX under jump diffusion with stochastic long‐term mean," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1508-1534, October.
    20. Li, Zhenxiong & Yao, Xingzhi & Izzeldin, Marwan, 2023. "On the right jump tail inferred from the VIX market," International Review of Financial Analysis, Elsevier, vol. 86(C).
    21. Tai‐Yong Roh & Alireza Tourani‐Rad & Yahua Xu & Yang Zhao, 2021. "Volatility‐of‐volatility risk in the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 245-265, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.08623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.