IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1811.10935.html
   My bibliography  Save this paper

On the martingale property in the rough Bergomi model

Author

Listed:
  • Paul Gassiat

Abstract

We consider a class of fractional stochastic volatility models (including the so-called rough Bergomi model), where the volatility is a superlinear function of a fractional Gaussian process. We show that the stock price is a true martingale if and only if the correlation $\rho$ between the driving Brownian motions of the stock and the volatility is nonpositive. We also show that for each $\rho \frac{1}{{1-\rho^2}}$, the $m$-th moment of the stock price is infinite at each positive time.

Suggested Citation

  • Paul Gassiat, 2018. "On the martingale property in the rough Bergomi model," Papers 1811.10935, arXiv.org, revised Apr 2019.
  • Handle: RePEc:arx:papers:1811.10935
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1811.10935
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blei, Stefan & Engelbert, Hans-Jürgen, 2009. "On exponential local martingales associated with strong Markov continuous local martingales," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2859-2880, September.
    2. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    3. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    4. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    5. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    6. Archil Gulisashvili, 2018. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Papers 1808.00421, arXiv.org, revised Jun 2019.
    7. Stefan Gerhold & Christoph Gerstenecker & Arpad Pinter, 2018. "Moment Explosions in the Rough Heston Model," Papers 1801.09458, arXiv.org, revised Apr 2018.
    8. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2018. "Precise asymptotics: robust stochastic volatility models," Papers 1811.00267, arXiv.org, revised Nov 2020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    2. Ioannis Gasteratos & Antoine Jacquier, 2023. "Transportation-cost inequalities for non-linear Gaussian functionals," Papers 2310.05750, arXiv.org.
    3. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    4. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Minimax Theory," Papers 2210.01214, arXiv.org, revised Feb 2024.
    5. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    6. Ofelia Bonesini & Antoine Jacquier & Aitor Muguruza, 2024. "Risk premium and rough volatility," Papers 2403.11897, arXiv.org.
    7. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    8. Masaaki Fukasawa, 2020. "Volatility has to be rough," Papers 2002.09215, arXiv.org.
    9. Philipp Harms, 2019. "Strong convergence rates for Markovian representations of fractional processes," Papers 1902.01471, arXiv.org, revised Aug 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    2. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    3. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    4. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    5. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    6. Paul Gassiat, 2022. "Weak error rates of numerical schemes for rough volatility," Papers 2203.09298, arXiv.org, revised Feb 2023.
    7. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org.
    8. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    9. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    10. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    11. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    12. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2018. "Precise asymptotics: robust stochastic volatility models," Papers 1811.00267, arXiv.org, revised Nov 2020.
    13. Omar El Euch & Masaaki Fukasawa & Jim Gatheral & Mathieu Rosenbaum, 2018. "Short-term at-the-money asymptotics under stochastic volatility models," Papers 1801.08675, arXiv.org, revised Mar 2019.
    14. Ozan Akdogan, 2019. "Vol-of-vol expansion for (rough) stochastic volatility models," Papers 1910.03245, arXiv.org, revised Dec 2019.
    15. Ofelia Bonesini & Giorgia Callegaro & Antoine Jacquier, 2021. "Functional quantization of rough volatility and applications to volatility derivatives," Papers 2104.04233, arXiv.org, revised Mar 2024.
    16. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2018. "Hierarchical adaptive sparse grids and quasi Monte Carlo for option pricing under the rough Bergomi model," Papers 1812.08533, arXiv.org, revised Jan 2020.
    17. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    18. Stefan Gerhold & Christoph Gerstenecker & Arpad Pinter, 2019. "Moment explosions in the rough Heston model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 575-608, December.
    19. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    20. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1811.10935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.