IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1608.03428.html
   My bibliography  Save this paper

A Gaussian Markov alternative to fractional Brownian motion for pricing financial derivatives

Author

Listed:
  • Daniel Conus
  • Mackenzie Wildman

Abstract

Replacing Black-Scholes' driving process, Brownian motion, with fractional Brownian motion allows for incorporation of a past dependency of stock prices but faces a few major downfalls, including the occurrence of arbitrage when implemented in the financial market. We present the development, testing, and implementation of a simplified alternative to using fractional Brownian motion for pricing derivatives. By relaxing the assumption of past independence of Brownian motion but retaining the Markovian property, we are developing a competing model that retains the mathematical simplicity of the standard Black-Scholes model but also has the improved accuracy of allowing for past dependence. This is achieved by replacing Black-Scholes' underlying process, Brownian motion, with a particular Gaussian Markov process, proposed by Vladimir Dobri\'{c} and Francisco Ojeda.

Suggested Citation

  • Daniel Conus & Mackenzie Wildman, 2016. "A Gaussian Markov alternative to fractional Brownian motion for pricing financial derivatives," Papers 1608.03428, arXiv.org.
  • Handle: RePEc:arx:papers:1608.03428
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1608.03428
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    2. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    2. Peter Carr & Andrey Itkin, 2019. "ADOL - Markovian approximation of rough lognormal model," Papers 1904.09240, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    2. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    3. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    4. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    5. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    6. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    7. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    8. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    9. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    10. Jaros{l}aw Gruszka & Janusz Szwabi'nski, 2023. "Portfolio Optimisation via the Heston Model Calibrated to Real Asset Data," Papers 2302.01816, arXiv.org.
    11. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    12. Qin, Ruwen & Nembhard, David A., 2012. "Demand modeling of stochastic product diffusion over the life cycle," International Journal of Production Economics, Elsevier, vol. 137(2), pages 201-210.
    13. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    14. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    15. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    16. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    17. Jitka Hilliard & Wei Li, 2014. "Volatilities implied by price changes in the S&P 500 options and futures contracts," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 599-626, May.
    18. P. D. Hinds & M. V. Tretyakov, 2022. "Neural variance reduction for stochastic differential equations," Papers 2209.12885, arXiv.org, revised May 2023.
    19. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. C. He & J. Kennedy & T. Coleman & P. Forsyth & Y. Li & K. Vetzal, 2006. "Calibration and hedging under jump diffusion," Review of Derivatives Research, Springer, vol. 9(1), pages 1-35, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1608.03428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.