IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.01816.html
   My bibliography  Save this paper

Portfolio Optimisation via the Heston Model Calibrated to Real Asset Data

Author

Listed:
  • Jaros{l}aw Gruszka
  • Janusz Szwabi'nski

Abstract

The debate between active and passive investment strategies has been ongoing for many years and is far from being over. In this paper, we show that the choice of an optimal portfolio management strategy depends on an investment climate, which we measure via the parameters of the Heston model calibrated to the real stock market data. Depending on the values of those parameters, the passive strategy may namely outperform the active ones or vice versa. The method is tested on three stock market indices: S\&P500, DAX and WIG20.

Suggested Citation

  • Jaros{l}aw Gruszka & Janusz Szwabi'nski, 2023. "Portfolio Optimisation via the Heston Model Calibrated to Real Asset Data," Papers 2302.01816, arXiv.org.
  • Handle: RePEc:arx:papers:2302.01816
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.01816
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Avanidhar Subrahmanyam, 2008. "Behavioural Finance: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 14(1), pages 12-29, January.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    4. Jaros{l}aw Gruszka & Janusz Szwabi'nski, 2022. "Parameter Estimation of the Heston Volatility Model with Jumps in the Asset Prices," Papers 2211.14814, arXiv.org.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. Alexander Haluszczynski & Ingo Laut & Heike Modest & Christoph Rath, 2017. "Linear and nonlinear market correlations: characterizing financial crises and portfolio optimization," Papers 1712.02661, arXiv.org.
    7. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2007. "Models for S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices," CREATES Research Papers 2007-37, Department of Economics and Business Economics, Aarhus University.
    8. Gruszka, Jarosław & Szwabiński, Janusz, 2021. "Advanced strategies of portfolio management in the Heston market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    11. Gruszka, Jarosław & Szwabiński, Janusz, 2020. "Best portfolio management strategies for synthetic and real assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    12. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaros{l}aw Gruszka & Janusz Szwabi'nski, 2022. "Parameter Estimation of the Heston Volatility Model with Jumps in the Asset Prices," Papers 2211.14814, arXiv.org.
    2. Bégin, Jean-François, 2020. "Levelling the playing field: A VIX-linked structure for funded pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 58-78.
    3. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    4. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    5. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    6. David S. Bates, 1997. "Post-'87 Crash Fears in S&P 500 Futures Options," NBER Working Papers 5894, National Bureau of Economic Research, Inc.
    7. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    8. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    9. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    10. Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
    11. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    12. Carme Frau & Viviana Fanelli, 2024. "Seasonality in commodity prices: new approaches for pricing plain vanilla options," Annals of Operations Research, Springer, vol. 336(1), pages 1089-1131, May.
    13. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    14. Hu, May & Park, Jason, 2019. "Valuation of collateralized debt obligations: An equilibrium model," Economic Modelling, Elsevier, vol. 82(C), pages 119-135.
    15. F. Cacace & A. Germani & M. Papi, 2019. "On parameter estimation of Heston’s stochastic volatility model: a polynomial filtering method," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 503-525, December.
    16. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    17. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    18. Ciprian Necula, 2008. "Asset Pricing in a Two-Country Discontinuous General Equilibrium Model," Advances in Economic and Financial Research - DOFIN Working Paper Series 24, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    19. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "Numerical stability of a hybrid method for pricing options," Papers 1603.07225, arXiv.org, revised Dec 2019.
    20. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.01816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.