IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/309.html
   My bibliography  Save this paper

A Stochastic Approach to the Valuation of Barrier Options in Heston's Stochastic Volatility Model

Author

Listed:
  • Susanne Griebsch
  • Kay Pilz

Abstract

In the valuation of continuous barrier options the distribution of the first hitting time plays a substantial role. In general, the derivation of a hitting time distribution poses a mathematically challenging problem for continuous but otherwise arbitrary boundary curves. When considering barrier options in the Heston model the non-linearity of the variance process leads to the problem of a non-linear hitting boundary. Here, we choose a stochastic approach to solve this problem in the reduced Heston framework, when the correlation is zero and foreign and domestic interest rates are equal. In this context one of our main findings involves the proof of the reection principle for a driftless Itô process with a time-dependent variance. Combining the two results, we derive a closed-form formula for the value of continuous barrier options. Compared to an existing pricing formula, our solution provides further insight into how the barrier option value in the Heston model is constructed. Extending the results to the general Heston framework with arbitrary correlation and drift, we obtain approximations for the joint random variables of the Itô process and its maximum in a weak sense. As a consequence, an approximate formula for pricing barrier options is established. A numerical case study is also performed which illustrates the agreement in results of our developed formulas with standard finite difference methods

Suggested Citation

  • Susanne Griebsch & Kay Pilz, 2012. "A Stochastic Approach to the Valuation of Barrier Options in Heston's Stochastic Volatility Model," Research Paper Series 309, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:309
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp309.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    2. Susanne Griebsch & Uwe Wystup, 2011. "On the valuation of fader and discrete barrier options in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 693-709.
    3. Andrew Ziogas & Carl Chiarella, 2005. "Pricing American Options under Stochastic Volatility," Computing in Economics and Finance 2005 77, Society for Computational Economics.
    4. Carl Chiarella & Boda Kang & Gunter H. Meyer, 2010. "The Evaluation Of Barrier Option Prices Under Stochastic Volatility," Research Paper Series 266, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    2. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    3. Susanne Griebsch, 2013. "The evaluation of European compound option prices under stochastic volatility using Fourier transform techniques," Review of Derivatives Research, Springer, vol. 16(2), pages 135-165, July.
    4. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    5. Maya Briani & Lucia Caramellino & Antonino Zanette, 2013. "A hybrid approach for the implementation of the Heston model," Papers 1307.7178, arXiv.org, revised Sep 2017.
    6. Ziveyi, Jonathan & Blackburn, Craig & Sherris, Michael, 2013. "Pricing European options on deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 300-311.
    7. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    8. Robert J. Elliott & Katsumasa Nishide & Carlton‐James U. Osakwe, 2016. "Heston‐Type Stochastic Volatility with a Markov Switching Regime," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(9), pages 902-919, September.
    9. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "Numerical stability of a hybrid method for pricing options," Papers 1603.07225, arXiv.org, revised Dec 2019.
    11. Maya Briani & Lucia Caramellino & Antonino Zanette, 2017. "A hybrid approach for the implementation of the Heston model," Post-Print hal-00916440, HAL.
    12. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    13. Hideharu Funahashi & Tomohide Higuchi, 2018. "An analytical approximation for single barrier options under stochastic volatility models," Annals of Operations Research, Springer, vol. 266(1), pages 129-157, July.
    14. Gerald Cheang & Carl Chiarella & Andrew Ziogas, 2009. "An Analysis of American Options Under Heston Stochastic Volatility and Jump-Diffusion Dynamics," Research Paper Series 256, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Hongshan Li & Zhongyi Huang, 2019. "Artificial boundary method for the solution of pricing European options under the Heston model," Papers 1912.00691, arXiv.org.
    16. Junkee Jeon & Jeonggyu Huh & Kyunghyun Park, 2020. "An Analytic Approximation for Valuation of the American Option Under the Heston Model in Two Regimes," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 499-528, August.
    17. Carl Chiarella & Jonathan Ziveyi, 2011. "Two Stochastic Volatility Processes - American Option Pricing," Research Paper Series 292, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Ballestra, Luca Vincenzo & Pacelli, Graziella, 2013. "Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach," Journal of Economic Dynamics and Control, Elsevier, vol. 37(6), pages 1142-1167.
    19. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011.
    20. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.

    More about this item

    Keywords

    Heston model; barrier options; reflection principle;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.