IDEAS home Printed from
   My bibliography  Save this paper

Pricing American Options under Stochastic Volatility


  • Andrew Ziogas
  • Carl Chiarella


This paper provides an extension of McKean’s (1965) incomplete Fourier transform method to solve the two-factor partial differential equation for the price and early exercise surface of an American call option, in the case where the volatility of the underlying evolves randomly. The Heston (1993) square-root process is used for the volatility dynamics. The price is given by an integral equation dependent upon the early exercise surface, using a free boundary approximation that is linear in volatility. By evaluating the pricing equation along the free surface boundary, we provide a corresponding integral equation for the early exercise region. An algorithm is proposed for solving the integral equation system, based upon numerical integration techniques for Volterra integral equations. The method is implemented, and the resulting prices are compared with the constant volatility model. The computational efficiency of the numerical integration scheme is also considered

Suggested Citation

  • Andrew Ziogas & Carl Chiarella, 2005. "Pricing American Options under Stochastic Volatility," Computing in Economics and Finance 2005 77, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:77

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Roberts, Kevin & Weitzman, Martin L, 1981. "Funding Criteria for Research, Development, and Exploration Projects," Econometrica, Econometric Society, vol. 49(5), pages 1261-1288, September.
    2. Gene M. Grossman & Carl Shapiro, 1986. "Optimal Dynamic R&D Programs," RAND Journal of Economics, The RAND Corporation, vol. 17(4), pages 581-593, Winter.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    4. Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, Oxford University Press, vol. 101(4), pages 707-727.
    5. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    6. Eduardo S. Schwartz & Carlos Zozaya-Gorostiza, 2003. "Investment Under Uncertainty in Information Technology: Acquisition and Development Projects," Management Science, INFORMS, vol. 49(1), pages 57-70, January.
    7. Robert E. Lucas, Jr., 1971. "Optimal Management of a Research and Development Project," Management Science, INFORMS, vol. 17(11), pages 679-697, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Farid AitSahlia & Manisha Goswami & Suchandan Guha, 2010. "American option pricing under stochastic volatility: an efficient numerical approach," Computational Management Science, Springer, vol. 7(2), pages 171-187, April.
    2. Carl Chiarella & Jonathan Ziveyi, 2011. "Two Stochastic Volatility Processes - American Option Pricing," Research Paper Series 292, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, November.
    4. Gerald Cheang & Carl Chiarella & Andrew Ziogas, 2009. "An Analysis of American Options Under Heston Stochastic Volatility and Jump-Diffusion Dynamics," Research Paper Series 256, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Susanne Griebsch & Kay Pilz, 2012. "A Stochastic Approach to the Valuation of Barrier Options in Heston's Stochastic Volatility Model," Research Paper Series 309, Quantitative Finance Research Centre, University of Technology, Sydney.

    More about this item


    American options; stochastic volatility; Volterra integral equations; free boundary problem;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:77. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.