IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v85y2020i4d10.1007_s11336-020-09730-5.html
   My bibliography  Save this article

Goodman and Kruskal’s Gamma Coefficient for Ordinalized Bivariate Normal Distributions

Author

Listed:
  • Alessandro Barbiero

    (Università degli Studi di Milano)

  • Asmerilda Hitaj

    (Università degli Studi dell’Insubria)

Abstract

We consider a bivariate normal distribution with linear correlation $$\rho $$ ρ whose random components are discretized according to two assigned sets of thresholds. On the resulting bivariate ordinal random variable, one can compute Goodman and Kruskal’s gamma coefficient, $$\gamma $$ γ , which is a common measure of ordinal association. Given the known analytical monotonic relationship between Pearson’s $$\rho $$ ρ and Kendall’s rank correlation $$\tau $$ τ for the bivariate normal distribution, and since in the continuous case, Kendall’s $$\tau $$ τ coincides with Goodman and Kruskal’s $$\gamma $$ γ , the change of this association measure before and after discretization is worth studying. We consider several experimental settings obtained by varying the two sets of thresholds, or, equivalently, the marginal distributions of the final ordinal variables. This study, confirming previous findings, shows how the gamma coefficient is always larger in absolute value than Kendall’s rank correlation; this discrepancy lessens when the number of categories increases or, given the same number of categories, when using equally probable categories. Based on these results, a proposal is suggested to build a bivariate ordinal variable with assigned margins and Goodman and Kruskal’s $$\gamma $$ γ by ordinalizing a bivariate normal distribution. Illustrative examples employing artificial and real data are provided.

Suggested Citation

  • Alessandro Barbiero & Asmerilda Hitaj, 2020. "Goodman and Kruskal’s Gamma Coefficient for Ordinalized Bivariate Normal Distributions," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 905-925, December.
  • Handle: RePEc:spr:psycho:v:85:y:2020:i:4:d:10.1007_s11336-020-09730-5
    DOI: 10.1007/s11336-020-09730-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-020-09730-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-020-09730-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Rao Chaganty & Harry Joe, 2006. "Range of correlation matrices for dependent Bernoulli random variables," Biometrika, Biometrika Trust, vol. 93(1), pages 197-206, March.
    2. Becker, Mark P., 1989. "On the bivariate normal distribution and association models for ordinal categorical data," Statistics & Probability Letters, Elsevier, vol. 8(5), pages 435-440, October.
    3. C. Vale & Vincent Maurelli, 1983. "Simulating multivariate nonnormal distributions," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 465-471, September.
    4. Muthen, Bengt, 1983. "Latent variable structural equation modeling with categorical data," Journal of Econometrics, Elsevier, vol. 22(1-2), pages 43-65.
    5. Ulf Olsson, 1979. "Maximum likelihood estimation of the polychoric correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 44(4), pages 443-460, December.
    6. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    7. Njål Foldnes & Steffen Grønneberg, 2019. "On Identification and Non-normal Simulation in Ordinal Covariance and Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1000-1017, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golob, Thomas F., 1988. "Structural Equation Modeling of Travel Choice Dynamics," University of California Transportation Center, Working Papers qt2kj325qv, University of California Transportation Center.
    2. Golob, Thomas F. & Recker, Wilfred W. & Alvarez, Veronica M., 2004. "Safety aspects of freeway weaving sections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(1), pages 35-51, January.
    3. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    4. Golob, Thomas F., 1988. "Structural Equation Modeling of Travel Choice Dynamics," University of California Transportation Center, Working Papers qt3dj9x6wr, University of California Transportation Center.
    5. Njål Foldnes & Steffen Grønneberg, 2019. "On Identification and Non-normal Simulation in Ordinal Covariance and Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1000-1017, December.
    6. Steffen Grønneberg & Jonas Moss & Njål Foldnes, 2020. "Partial Identification of Latent Correlations with Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 1028-1051, December.
    7. Lankford, Hamilton & Wyckoff, James, 2001. "Who Would Be Left Behind by Enhanced Private School Choice?," Journal of Urban Economics, Elsevier, vol. 50(2), pages 288-312, September.
    8. Steffen Grønneberg & Njål Foldnes, 2019. "A Problem with Discretizing Vale–Maurelli in Simulation Studies," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 554-561, June.
    9. Robert O'Brien & Pamela Homer, 1987. "Corrections for coarsely categorized measures: LISREL's polyserial and polychoric correlations," Quality & Quantity: International Journal of Methodology, Springer, vol. 21(4), pages 349-360, December.
    10. Bengt Muthén, 1989. "Latent variable modeling in heterogeneous populations," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 557-585, September.
    11. Anestis Touloumis & Alan Agresti & Maria Kateri, 2013. "GEE for Multinomial Responses Using a Local Odds Ratios Parameterization," Biometrics, The International Biometric Society, vol. 69(3), pages 633-640, September.
    12. Kai Hong & Peter A. Savelyev & Kegon T. K. Tan, 2020. "Understanding the Mechanisms Linking College Education with Longevity," Journal of Human Capital, University of Chicago Press, vol. 14(3), pages 371-400.
    13. Maystre, Nicolas & Olivier, Jacques & Thoenig, Mathias & Verdier, Thierry, 2014. "Product-based cultural change: Is the village global?," Journal of International Economics, Elsevier, vol. 92(2), pages 212-230.
    14. Headrick, Todd C. & Sheng, Yanyan & Hodis, Flaviu-Adrian, 2007. "Numerical Computing and Graphics for the Power Method Transformation Using Mathematica," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i03).
    15. Albert Maydeu-Olivares, 2006. "Limited information estimation and testing of discretized multivariate normal structural models," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 57-77, March.
    16. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    17. Pesaran, M. Hashem & Yamagata, Takashi, 2012. "Testing CAPM with a Large Number of Assets," IZA Discussion Papers 6469, Institute of Labor Economics (IZA).
    18. Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
    19. Dong, Fengxia & Mitchell, Paul D. & Hurley, Terrance M. & Frisvold, George B., 2012. "Quantifying Farmer Adoption Intensity for Weed Resistance Management Practices and Its Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125194, Agricultural and Applied Economics Association.
    20. Max Auerswald & Morten Moshagen, 2015. "Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 920-937, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:85:y:2020:i:4:d:10.1007_s11336-020-09730-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.