IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws086321.html
   My bibliography  Save this paper

Copulas in finance and insurance

Author

Listed:
  • Romera, Rosario
  • Molanes, Elisa M.

Abstract

Copulas provide a potential useful modeling tool to represent the dependence structure among variables and to generate joint distributions by combining given marginal distributions. Simulations play a relevant role in finance and insurance. They are used to replicate efficient frontiers or extremal values, to price options, to estimate joint risks, and so on. Using copulas, it is easy to construct and simulate from multivariate distributions based on almost any choice of marginals and any type of dependence structure. In this paper we outline recent contributions of statistical modeling using copulas in finance and insurance. We review issues related to the notion of copulas, copula families, copula-based dynamic and static dependence structure, copulas and latent factor models and simulation of copulas. Finally, we outline hot topics in copulas with a special focus on model selection and goodness-of-fit testing.

Suggested Citation

  • Romera, Rosario & Molanes, Elisa M., 2008. "Copulas in finance and insurance," DES - Working Papers. Statistics and Econometrics. WS ws086321, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws086321
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/3231/ws086321.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kallsen, Jan & Tankov, Peter, 2006. "Characterization of dependence of multidimensional Lévy processes using Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1551-1572, August.
    2. A. Sancetta & Satchell, S.E., 2001. "Bernstein Approximations to the Copula Function and Portfolio Optimization," Cambridge Working Papers in Economics 0105, Faculty of Economics, University of Cambridge.
    3. Yu, Lining & Voit, Eberhard O., 2006. "Construction of bivariate S-distributions with copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1822-1839, December.
    4. Fabrizio Durante & José Quesada-Molina & Carlo Sempi, 2007. "A Generalization of the Archimedean Class of Bivariate Copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 487-498, September.
    5. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 125-154.
    6. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    7. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    8. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    9. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    10. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(03), pages 535-562, June.
    11. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    12. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    13. Andrew J. Patton, 2008. "Copula-Based Models for Financial Time Series," OFRC Working Papers Series 2008fe21, Oxford Financial Research Centre.
    14. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    15. Kaishev, Vladimir K. & Dimitrova, Dimitrina S. & Haberman, Steven, 2007. "Modelling the joint distribution of competing risks survival times using copula functions," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 339-361, November.
    16. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 37(02), pages 475-515, November.
    17. Belzunce, Felix & Ortega, Eva-Maria & Pellerey, Franco & Ruiz, Jose M., 2006. "Variability of total claim amounts under dependence between claims severity and number of events," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 460-468, June.
    18. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    19. Rustam Ibragimov, 2005. "Copula-Based Dependence Characterizations and Modeling for Time Series," Harvard Institute of Economic Research Working Papers 2094, Harvard - Institute of Economic Research.
    20. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    21. Yang, Jingping & Cheng, Shihong & Zhang, Lihong, 2006. "Bivariate copula decomposition in terms of comonotonicity, countermonotonicity and independence," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 267-284, October.
    22. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    23. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    24. Paul Embrechts, 2009. "Copulas: A Personal View," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 639-650.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Dependence structure;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws086321. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.