IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/0c6f2c43-aa7d-45c1-9d43-74f41665c2f2.html
   My bibliography  Save this paper

Tests for Independence in Nonparametric Regression

Author

Listed:
  • Einmahl, J.H.J.

    (Tilburg University, Center For Economic Research)

  • van Keilegom, I.

Abstract

No abstract is available for this item.

Suggested Citation

  • Einmahl, J.H.J. & van Keilegom, I., 2006. "Tests for Independence in Nonparametric Regression," Discussion Paper 2006-80, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:0c6f2c43-aa7d-45c1-9d43-74f41665c2f2
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/779466/80.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. H. Dette & A. Munk, 1998. "Testing heteroscedasticity in nonparametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 693-708.
    2. H. Dette & A. Munk & T. Wagner, 1998. "Estimating the variance in nonparametric regression—what is a reasonable choice?," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 751-764.
    3. Adang, Pim & Melenberg, Bertrand, 1995. "Nonnegativity Constraints and Intratemporal Uncertainty in a Multi-good Life-Cycle Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(1), pages 1-15, Jan.-Marc.
    4. Michael G. Akritas & Ingrid Van Keilegom, 2001. "Non‐parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567, September.
    5. Nagel, Eva-Renate & Dette, Holger & Neumeyer, Natalie, 2004. "Bootstrap tests for the error distribution in linear and nonparametric regression models," Technical Reports 2004,38, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Lee, Byung-Joo, 1992. "A Heteroskedasticity Test Robust to Conditional Mean Misspecification," Econometrica, Econometric Society, vol. 60(1), pages 159-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Braekers, Roel & Van Keilegom, Ingrid, 2009. "Flexible modeling based on copulas in nonparametric median regression," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1270-1281, July.
    2. Florens, Jean-Pierre & Simar, Léopold & Van Keilegom, Ingrid, 2014. "Frontier estimation in nonparametric location-scale models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 456-470.
    3. Van Keilegom, Ingrid, 2013. "Discussion on: "An updated review of Goodness-of-Fit tests for regression models" (by W. Gonzales-Manteiga and R.M. Crujeiras)," LIDAM Discussion Papers ISBA 2013008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Simar, Léopold & Vanhems, Anne & Van Keilegom, Ingrid, 2016. "Unobserved heterogeneity and endogeneity in nonparametric frontier estimation," Journal of Econometrics, Elsevier, vol. 190(2), pages 360-373.
    5. Mastromarco, Camilla & Simar, Léopold, 2018. "Globalization and productivity: A robust nonparametric world frontier analysis," Economic Modelling, Elsevier, vol. 69(C), pages 134-149.
    6. Einmahl, J.H.J. & van Keilegom, I., 2004. "Goodness-of-fit Tests in Nonparametric Regression," Other publications TiSEM 44e08f75-b35d-424e-b33e-0, Tilburg University, School of Economics and Management.
    7. Neumeyer, Natalie, 2009. "Testing independence in nonparametric regression," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1551-1566, August.
    8. Natalie Neumeyer & Ingrid Van Keilegom, 2009. "Change‐Point Tests for the Error Distribution in Non‐parametric Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 518-541, September.
    9. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2012. "n-uniformly consistent density estimation in nonparametric regression models," Journal of Econometrics, Elsevier, vol. 167(2), pages 305-316.
    10. Fan, Caiyun & Lu, Wenbin & Zhou, Yong, 2021. "Testing error heterogeneity in censored linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    11. Sankar, Subhra & Bergsma, Wicher & Dassios, Angelos, 2017. "Testing independence of covariates and errors in nonparametric regression," LSE Research Online Documents on Economics 83780, London School of Economics and Political Science, LSE Library.
    12. Hlávka, Zdenek & Husková, Marie & Meintanis, Simos G., 2011. "Tests for independence in non-parametric heteroscedastic regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 816-827, April.
    13. Jun Zhang & Zhenghui Feng & Peirong Xu, 2015. "Estimating the conditional single-index error distribution with a partial linear mean regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 61-83, March.
    14. Teran Hidalgo, Sebastian J. & Wu, Michael C. & Engel, Stephanie M. & Kosorok, Michael R., 2018. "Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 135-155.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Einmahl, J.H.J. & van Keilegom, I., 2004. "Goodness-of-fit Tests in Nonparametric Regression," Discussion Paper 2004-12, Tilburg University, Center for Economic Research.
    2. Holger Dette & Kay Pilz, 2009. "On the estimation of a monotone conditional variance in nonparametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 111-141, March.
    3. Einmahl, John H.J. & Van Keilegom, Ingrid, 2008. "Specification tests in nonparametric regression," Journal of Econometrics, Elsevier, vol. 143(1), pages 88-102, March.
    4. Li, Zhaoyuan & Yao, Jianfeng, 2019. "Testing for heteroscedasticity in high-dimensional regressions," Econometrics and Statistics, Elsevier, vol. 9(C), pages 122-139.
    5. Holger Dette & Natalie Neumeyer & Ingrid Van Keilegom, 2007. "A new test for the parametric form of the variance function in non‐parametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 903-917, November.
    6. Braekers, Roel & Van Keilegom, Ingrid, 2009. "Flexible modeling based on copulas in nonparametric median regression," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1270-1281, July.
    7. Neumeyer, Natalie, 2009. "Testing independence in nonparametric regression," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1551-1566, August.
    8. Long Feng & Changliang Zou & Zhaojun Wang & Lixing Zhu, 2015. "Robust comparison of regression curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 185-204, March.
    9. Temel, Tugrul T., 2001. "A Nonparametric Hypothesis Test Via The Bootstrap Resampling," 2001 Annual meeting, August 5-8, Chicago, IL 20600, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    11. Dette, Holger & Pilz, Kay F., 2004. "On the estimation of a monotone conditional variance in nonparametric regression," Technical Reports 2004,42, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Kelley, Clare & Lanot, Gauthier, 2002. "Consumption Patterns Over Pay Periods," Economic Research Papers 269469, University of Warwick - Department of Economics.
    13. Holger Dette & Juan Carlos Pardo‐Fernández & Ingrid Van Keilegom, 2009. "Goodness‐of‐Fit Tests for Multiplicative Models with Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 782-799, December.
    14. Zhu, Xuehu & Chen, Fei & Guo, Xu & Zhu, Lixing, 2016. "Heteroscedasticity testing for regression models: A dimension reduction-based model adaptive approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 263-283.
    15. Holger Dette & Mareen Marchlewski & Jens Wagener, 2012. "Testing for a constant coefficient of variation in nonparametric regression by empirical processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1045-1070, October.
    16. Sankar, Subhra & Bergsma, Wicher & Dassios, Angelos, 2017. "Testing independence of covariates and errors in nonparametric regression," LSE Research Online Documents on Economics 83780, London School of Economics and Political Science, LSE Library.
    17. Feve, Frederique & Florens, Jean-Pierre & Van Keilegom, Ingrid, 2012. "Estimation of conditional ranks and tests of exogeneity in nonparametric nonseparable models," LIDAM Discussion Papers ISBA 2012036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Holzmann, Hajo & Bissantz, Nicolai & Munk, Axel, 2007. "Density testing in a contaminated sample," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 57-75, January.
    19. Azhong Ye & Rob J Hyndman & Zinai Li, 2006. "Local Linear Multivariate Regression with Variable Bandwidth in the Presence of Heteroscedasticity," Monash Econometrics and Business Statistics Working Papers 8/06, Monash University, Department of Econometrics and Business Statistics.
    20. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:0c6f2c43-aa7d-45c1-9d43-74f41665c2f2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.