IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v69y2007i5p903-917.html
   My bibliography  Save this article

A new test for the parametric form of the variance function in non-parametric regression

Author

Listed:
  • Holger Dette
  • Natalie Neumeyer
  • Ingrid Van Keilegom

Abstract

In the common non-parametric regression model the problem of testing for the parametric form of the conditional variance is considered. A stochastic process based on the difference between the empirical processes that are obtained from the standardized non-parametric residuals under the null hypothesis (of a specific parametric form of the variance function) and the alternative is introduced and its weak convergence established. This result is used for the construction of a Kolmogorov-Smirnov and a Cramér-von Mises type of statistic for testing the parametric form of the conditional variance. The consistency of a bootstrap approximation is established, and the finite sample properties of this approximation are investigated by means of a simulation study. In particular the new procedure is compared with some of the currently available methods for this problem. Copyright 2007 Royal Statistical Society.

Suggested Citation

  • Holger Dette & Natalie Neumeyer & Ingrid Van Keilegom, 2007. "A new test for the parametric form of the variance function in non-parametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 903-917.
  • Handle: RePEc:bla:jorssb:v:69:y:2007:i:5:p:903-917
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9868.2007.00616.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diblasi, Angela & Bowman, Adrian, 1997. "Testing for constant variance in a linear model," Statistics & Probability Letters, Elsevier, vol. 33(1), pages 95-103, April.
    2. Koul, H. L. & Lahiri, S. N., 1994. "On Bootstrapping M-Estimated Residual Processes in Multiple Linear-Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 255-265, May.
    3. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    4. Michael G. Akritas, 2001. "Non-parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Einmahl, John H.J. & Van Keilegom, Ingrid, 2008. "Specification tests in nonparametric regression," Journal of Econometrics, Elsevier, vol. 143(1), pages 88-102, March.
    2. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    3. Neumeyer, Natalie & Van Keilegom, Ingrid, 2010. "Estimating the error distribution in nonparametric multiple regression with applications to model testing," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1067-1078, May.
    4. Florens, Jean-Pierre & Simar, Léopold & Van Keilegom, Ingrid, 2014. "Frontier estimation in nonparametric location-scale models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 456-470.
    5. Zhu, Xuehu & Guo, Xu & Lin, Lu & Zhu, Lixing, 2015. "Heteroscedasticity checks for single index models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 41-55.
    6. Samarakoon, Nishantha & Song, Weixing, 2011. "Minimum distance conditional variance function checking in heteroscedastic regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 579-600, March.
    7. Benjamin Colling & Ingrid Keilegom, 2016. "Goodness-of-fit tests in semiparametric transformation models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 291-308, June.
    8. Zhu, Xuehu & Chen, Fei & Guo, Xu & Zhu, Lixing, 2016. "Heteroscedasticity testing for regression models: A dimension reduction-based model adaptive approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 263-283.
    9. Xu Guo & Tao Wang & Lixing Zhu, 2016. "Model checking for parametric single-index models: a dimension reduction model-adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1013-1035, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:69:y:2007:i:5:p:903-917. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.