IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v105i491y2010p1070-1083.html
   My bibliography  Save this article

Robust Data-Driven Inference for Density-Weighted Average Derivatives

Author

Listed:
  • Cattaneo, Matias D.
  • Crump, Richard K.
  • Jansson, Michael

Abstract

This paper presents a new data-driven bandwidth selector compatible with the small bandwidth asymptotics developed in Cattaneo, Crump, and Jansson (2009) for density-weighted average derivatives. The new bandwidth selector is of the plug-in variety, and is obtained based on a mean squared error expansion of the estimator of interest. An extensive Monte Carlo experiment shows a remarkable improvement in performance when the bandwidth-dependent robust inference procedure proposed by Cattaneo, Crump, and Jansson (2009) is coupled with this new data-driven bandwidth selector. The resulting robust data-driven confidence intervals compare favorably to the alternative procedures available in the literature.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2010. "Robust Data-Driven Inference for Density-Weighted Average Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1070-1083.
  • Handle: RePEc:bes:jnlasa:v:105:i:491:y:2010:p:1070-1083
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2010.tm09590
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. HÄRDLE, Wolfgang & HART, Jeffrey & MARRON, Steve & TSYBAKOV, Alexander, "undated". "Bandwith choice for average derivative estimation," CORE Discussion Papers RP 977, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    3. Whitney K. Newey & Fushing Hsieh & James M. Robins, 2004. "Twicing Kernels and a Small Bias Property of Semiparametric Estimators," Econometrica, Econometric Society, vol. 72(3), pages 947-962, May.
    4. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    5. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74 Elsevier.
    6. J. L. HOROWITZ & Wolfgang HÄRDLE, 1994. "Direct Semiparametric Estimation of Single - Index Models with Discrete Covariates," SFB 373 Discussion Papers 1994,36, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
    8. Haerdle,Wolfgang & Stoker,Thomas, 1987. "Investigations smooth multiple regression by the method of average derivatives," Discussion Paper Serie A 107, University of Bonn, Germany.
    9. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2014. "Small Bandwidth Asymptotics For Density-Weighted Average Derivatives," Econometric Theory, Cambridge University Press, vol. 30(01), pages 176-200, February.
    10. Robinson, P M, 1995. "The Normal Approximation for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 63(3), pages 667-680, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2012. "Alternative Asymptotics and the Partially Linear Model with Many Regressors," CREATES Research Papers 2012-02, Department of Economics and Business Economics, Aarhus University.
    2. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    3. Yukitoshi Matsushita & Taisuke Otsu, 2017. "Likelihood inference on semiparametric models: Average derivative and treatment effect," STICERD - Econometrics Paper Series 592, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val, 2011. "Conditional quantile processes based on series or many regressors," CeMMAP working papers CWP19/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(05), pages 1218-1241, October.
    6. Atchadé, Yves F. & Cattaneo, Matias D., 2014. "A martingale decomposition for quadratic forms of Markov chains (with applications)," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 646-677.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:105:i:491:y:2010:p:1070-1083. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.