IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Alternative Asymptotics and the Partially Linear Model with Many Regressors

  • Matias D. Cattaneo

    ()

    (University of Michigan)

  • Michael Jansson

    ()

    (UC Berkeley and CREATES)

  • Whitney K. Newey

    ()

    (MIT Department of Economics)

Non-standard distributional approximations have received considerable attention in recent years. They often provide more accurate approximations in small samples, and theoretical improvements in some cases. This paper shows that the seemingly unrelated "?many instruments asymptotics" ?and "?small bandwidth asymptotics" ?share a common structure, where the object determining the limiting distribution is a V-statistic with a remainder that is an asymptotically normal degenerate U-statistic. This general structure can be used to derive new results. We employ it to obtain a new asymptotic distribution of a series estimator of the partially linear model when the number of terms in the series approximation possibly grows as fast as the sample size. This alternative asymptotic experiment implies a larger asymptotic variance than usual. When the disturbance is homoskedastic, this larger variance is consistently estimated by any of the usual homoskedastic-consistent estimators provided a "?degrees-of-freedom correction?" is used. Under heteroskedasticity of unknown form, however, none of the commonly used heteroskedasticity-robust standard-error estimators are consistent under the "?many regressors asymptotics"?. We characterize the source of this failure, and we also propose a new standard-error estimator that is consistent under both heteroskedasticity and ?"many regressors asymptotics"?. A small simulation study shows that these new confidence intervals have reasonably good empirical size in finite samples.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/12/rp12_02.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2012-02.

as
in new window

Length: 37
Date of creation: 20 Jan 2012
Date of revision:
Handle: RePEc:aah:create:2012-02
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-38, May.
  2. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
  3. Calhoun, Gray, 2010. "Hypothesis Testing in Linear Regression when K/N is Large," Staff General Research Papers 32216, Iowa State University, Department of Economics.
  4. repec:cup:cbooks:9780521496032 is not listed on IDEAS
  5. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2010. "Robust Data-Driven Inference for Density-Weighted Average Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1070-1083.
  6. Chao & Swanson & Hausman & Newey & Woutersen, 2010. "Asymptotic Distribution of JIVE in a Heteroskedastic IV Regression with Many Instruments," Economics Working Paper Archive 567, The Johns Hopkins University,Department of Economics.
  7. Joshua D. Angrist & Guido W. Imbens & Alan Krueger, 1995. "Jackknife Instrumental Variables Estimation," NBER Technical Working Papers 0172, National Bureau of Economic Research, Inc.
  8. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
  9. Michal Kolesár & Raj Chetty & John N. Friedman & Edward L. Glaeser & Guido W. Imbens, 2011. "Identification and Inference with Many Invalid Instruments," NBER Working Papers 17519, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2012-02. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.